Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (10): 1852-1864    DOI: 10.3785/j.issn.1008-973X.2019.10.002
Mechanical and Energy Engineering     
Life prediction of lithium-ion batteries based on multiscale decomposition and deep learning
Tian-zhong HU(),Jian-bo YU*()
School of Mechanical Engineering, Tongji University, Shanghai 201804, China
Download: HTML     PDF(3701KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A health degradation prediction model of lithium batteries based on multi-scale deep neural network was proposed aiming at the problems of poor model adaptability and inaccurate prediction in current remaining useful life (RUL) prediction methods. The collected energy data of lithium-ion batteries were decomposed into main trend data and fluctuation data by ensemble empirical mode decomposition (EEMD) and correlation analysis (CA). Then deep belief network (DBN) and long short-term memory (LSTM) were used to model the main trend and fluctuation data respectively. The predicting outcomes of DBN and LSTM were effectively integrated to obtain the health predicted results of lithium-ion battery. The experimental results show that the method can effectively fit the health trend of lithium-ion batteries and obtain accurate RUL prediction results. The performance of the method is better than other typical prediction methods.



Key wordslithium-ion battery      remaining useful life (RUL)      multiscale analysis      deep belief network      long short-term memory (LSTM)     
Received: 13 May 2019      Published: 30 September 2019
CLC:  TH 165  
  TN 911  
Corresponding Authors: Jian-bo YU     E-mail: 305122638@qq.com;jbyu@tongji.edu.cn
Cite this article:

Tian-zhong HU,Jian-bo YU. Life prediction of lithium-ion batteries based on multiscale decomposition and deep learning. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1852-1864.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.10.002     OR     http://www.zjujournals.com/eng/Y2019/V53/I10/1852


基于多尺度分解和深度学习的锂电池寿命预测

针对目前的剩余寿命预测(RUL)方法存在模型适应性差及预测不准确等问题,提出多尺度深度神经网络的锂电池健康退化预测模型. 通过经验模态分解(EEMD)方法和相关性分析(CA),将采集到的锂电池能量数据分解为主趋势数据和波动数据;采用深度置信网络(DBN)和长短期记忆网络(LSTM),分别对主趋势与波动数据进行建模;将DBN与LSTM预测结果进行有效集成,得到锂电池的健康预测结果. 实验结果表明,利用该方法能够有效地对锂电池的健康趋势进行拟合,得到准确的RUL预测结果,性能优于其他典型的预测方法.


关键词: 锂电池,  剩余寿命预测 (RUL),  多尺度分析,  深度置信网络,  长短期记忆网络(LSTM) 
Fig.1 Life prediction of lithium batteries based on multiscale decomposition and deep learning
Fig.2 Flow chart of training deep belief network
Fig.3 Network structure of long short-term memory
Fig.4 Flow chart of training long short-term memory network
电池编号 AT/°C CC/A DC/A EOC/V EOLC/%
#5 24 1.5 2 2.7 30
#6 24 1.5 2 2.5 30
#7 24 1.5 2 2.2 30
#18 24 1.5 2 2.5 30
Tab.1 Lithium battery parameters for prediction experiments
Fig.5 Variation curve of battery capacity
IMFs 数值 IMFs 数值
b 0.042 e 0.152
c 0.107 f 0.691
d 0.150 g 0.878
Tab.2 Correlation coefficients of intrinsic mode functions
Fig.6 State of health time series based on ensemble empirical modal decomposition
Fig.7 Filtering results of correlation analysis
输入数 输出数 迭代次数 学习率 网络结构
3 1 100 0.001 3-35-25-15-1
Tab.3 Parameter setting of deep belief network
输入数 输出数 细胞数 学习率 迭代次数
8 1 20 0.01 3 000
Tab.4 Parameter setting of long short-term memory network
Fig.8 Prediction results of models
Fig.9 Integrated prediction results
多尺度分解 DBN训练 DBN预测 LSTM训练 LSTM预测
3.19 10.41 0.28 1.66 1.08
Tab.5 Running time of prediction algorithm
电池编号 AT/°C CC/A DC/A EOC/V EOLC/%
#32 43 1.5 4 2.7 30
Tab.6 Lithium battery parameters for high temperature prediction experiments
Fig.10 Prediction results of high temperature environment
Fig.11 One-step prediction results of each integration model
Fig.12 Indicator values of each integration model for one-step prediction
Fig.13 Indicator values of each contrast model for one-step prediction
Fig.14 Five-step prediction results of each integration model
Fig.15 Indicator values of each integration model for five-step prediction
Fig.16 Indicator values of each contrast model for five-step prediction
Fig.17 Prediction results of remaining useful life
电池编号 SPP EoL EoP PE
#5 80 129 145 16
#5 90 129 121 8
#5 100 129 128 1
#6 80 113 108 13
#6 90 113 106 10
#6 100 113 99 8
Tab.7 RUL prediction results of remaining useful life
Fig.18 Experimental results of uncertainty analysis
[1]   GOEBEL K, SAHA B, SAXENA A, et al Prognostics in battery health management[J]. IEEE Instrumentation and Measurement Magazine, 2008, 11 (4): 33- 40
doi: 10.1109/MIM.2008.4579269
[2]   OLIVARES B E, CERDA M, MATIAS A, et al Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62 (2): 364- 376
doi: 10.1109/TIM.2012.2215142
[3]   YU J Local and nonlocal preserving projection for bearing defect classification and performance assessment[J]. IEEE Transactions on Industrial Electronics, 2012, 59 (5): 2363- 2376
doi: 10.1109/TIE.2011.2167893
[4]   KIM I S A Technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer[J]. IEEE Transactions on Power Electronics, 2010, 25 (4): 1013- 1022
doi: 10.1109/TPEL.2009.2034966
[5]   LIU D, XIE W, LIAO H, et al Integrated prognostic framework with probability ensemble for lithium-ion battery[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64 (3): 660- 670
doi: 10.1109/TIM.2014.2348613
[6]   张洋, 陈浩, 郭波, 等 锂离子电池剩余寿命在线预测[J]. 机械科学与技术, 2016, 35 (8): 1286- 1290
ZHANG Yang, CHEN Hao, GUO Bo, et al Online prediction of remaining useful lifetime for lithium-ion batteries[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35 (8): 1286- 1290
[7]   王常虹, 董汉成, 凌明祥, 等 车用锂离子电池剩余使用寿命预测方法[J]. 汽车工程, 2015, 37 (4): 476- 479
WANG Chang-hong, DONG Han-cheng, LING Ming-xiang, et al Remaining useful life prediction of automotive lithium-ion battery[J]. Automotive Engineering, 2015, 37 (4): 476- 479
doi: 10.3969/j.issn.1000-680X.2015.04.019
[8]   ASHWIN T R, CHUNG Y M, WANG J Capacity fade modelling of lithium-ion battery under cyclic loading conditions[J]. Journal of Power Sources, 2016, 328: 586- 598
doi: 10.1016/j.jpowsour.2016.08.054
[9]   LYU C, LAI Q, GE T, et al A lead-acid battery’s remaining useful life prediction by using electrochemical model in the particle filtering framework[J]. Energy, 2017, 120: 975- 984
doi: 10.1016/j.energy.2016.12.004
[10]   LI D, WANG W, ISMAIL F A mutated particle filter technique for system state estimation and battery life prediction[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63 (8): 2034- 2043
doi: 10.1109/TIM.2014.2303534
[11]   LEE S, KIM J, LEE J, et al State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge[J]. Journal of Power Sources, 2008, 185 (2): 1367- 1373
doi: 10.1016/j.jpowsour.2008.08.103
[12]   李赛, 庞晓琼, 林慧龙, 等 基于相关向量机的锂离子电池剩余寿命预测[J]. 计算机工程与设计, 2018, 39 (8): 2682- 2686
LI Sai, PANG Xiao-qiong, LIN Hui-long, et al RUL prediction for lithium-ion batteries based on relevance vector machine[J]. Computer Engineering and Design, 2018, 39 (8): 2682- 2686
[13]   王春雷, 赵琦, 秦孝丽, 等 基于改进相关向量机的锂电池寿命预测方法[J]. 北京航空航天大学学报, 2018, 44 (9): 1998- 2003
WANG Chun-lei, ZHAO Qi, QIN Xiao-li, et al Research on improved relevance vector machine life prediction method of lithium battery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44 (9): 1998- 2003
[14]   HU C, JAIN G, SCHMIDT C, et al Online estimation of lithium-ion battery capacity using sparse Bayesian learning[J]. Journal of Power Sources, 2015, 289: 105- 113
doi: 10.1016/j.jpowsour.2015.04.166
[15]   ZHANG Y, GUO B Online capacity estimation of lithium-ion batteries based on novel feature extraction and adaptive multi-kernel relevance vector machine[J]. Energies, 2015, 8 (11): 12439- 12457
doi: 10.3390/en81112320
[16]   WANG S, ZHAO L L, SU X H, et al Prognostics of lithium-ion batteries based on battery performance analysis and flexible support vector regression[J]. Energies, 2014, 7 (10): 6492- 6508
doi: 10.3390/en7106492
[17]   陈雄姿, 于劲松, 唐荻音, 等 基于贝叶斯LS-SVR的锂电池剩余寿命概率性预测[J]. 航空学报, 2013, 34 (9): 2219- 2229
CHEN Xiong-zi, YU Jin-song, TANG Di-yin, et al Probabilistic residual life prediction for lithium-ion batteries based on Bayesian LS-SVR[J]. Acta Aeronautica ET Astronautica Sinica, 2013, 34 (9): 2219- 2229
[18]   庞景月, 马云彤, 刘大同, 等 锂离子电池剩余寿命间接预测方法[J]. 中国科技论, 2014, 9 (1): 28- 36
PANG Jing-yue, MA Yun-tong, LIU Da-tong, et al Indirect remaining useful life prognostics for lithium-ion battery[J]. China Sciencepaper, 2014, 9 (1): 28- 36
doi: 10.3969/j.issn.2095-2783.2014.01.006
[19]   EDDAHECH A, BRIAT O, BERTRAND J, et al Behavior and state-of-health monitoring of lithium-ion batteries using impedance spectroscopy and recurring neural networks[J]. International Journal of Electrical Power and Energy, 2012, 42 (1): 487- 494
doi: 10.1016/j.ijepes.2012.04.050
[20]   XING Y, MA E W M, TSUI K L, et al An ensemble model for predicting the remaining useful performance of lithium-ion batteries[J]. Microelectronics Reliability, 2013, 53: 811- 820
doi: 10.1016/j.microrel.2012.12.003
[21]   LI H, PAN D, CHEN C L P Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine[J]. IEEE Transactions on Systems Man and Cybernetics Systems, 2014, 44 (7): 851- 862
doi: 10.1109/TSMC.2013.2296276
[22]   SAHA B, GOEBEL K, POLL S, et al Prognostics methods for battery health monitoring using a Bayesian framework[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58 (2): 291- 296
doi: 10.1109/TIM.2008.2005965
[23]   DONG H, JIN X, LOU Y, et al Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter[J]. Journal of Power Sources, 2014, 271: 114- 123
doi: 10.1016/j.jpowsour.2014.07.176
[24]   YU J B State of health prediction of lithium-ion batteries: multiscale logic regression and gaussian process regression ensemble[J]. Reliability Engineering and System Safety, 2018, 174: 82- 95
doi: 10.1016/j.ress.2018.02.022
[25]   沈延斌, 陈岭, 郭浩东, 等 基于深度学习的放置方式和位置无关运动识别[J]. 浙江大学学报: 工学版, 2016, 50 (6): 1141- 1148
SHEN Yan-bin, CHEN Ling, GUO Hao-dong, et al Deep learning based activity recognition independent of device orientation and placement[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (6): 1141- 1148
[26]   NAIR V, HINTON G E. 3-D object recognition with deep belief nets [C] // Advances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc, 2012: 1527-1554.
[27]   BAKER J, DENG L, GLASS J Developments and directions in speech recognition and understanding[J]. IEEE Signal Processing Magazine, 2009, 26 (3): 75- 80
doi: 10.1109/MSP.2009.932166
[28]   TAMILSELVAN P, WANG P Failure diagnosis using deep belief learning based health state classification[J]. Reliability Engineering and System Safety, 2013, 115: 124- 135
doi: 10.1016/j.ress.2013.02.022
[29]   SHAO H, JIANG H, ZHANG X, et al Rolling bearing fault diagnosis using an optimization deep belief network[J]. Measurement Science and Technology, 2015, 26 (11): 1- 17
[30]   袁公萍, 汤一平, 韩旺明, 等 基于深度卷积神经网络的车型识别方法[J]. 浙江大学学报: 工学版, 2018, 52 (4): 694- 702
YUAN Gong-ping, TANG Yi-ping, HAN Wang-ming, et al Vehicle category recognition based on deep convolutional neural network[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (4): 694- 702
[31]   陶洁, 刘义伦, 付卓, 等 基于Teager能量算子和深度置信网络的滚动轴承故障诊断[J]. 中南大学学报: 自然科学版, 2017, 48 (1): 61- 68
TAO Jie, LIU Yi-lun, FU Zhuo, et al Fault damage degrees diagnosis for rolling bearing based on Teager energy operator and deep belief network[J]. Journal of Central South University: Science and Technology, 2017, 48 (1): 61- 68
[32]   MA X, TAO Z, WANG Y, et al Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 187- 197
doi: 10.1016/j.trc.2015.03.014
[33]   KUREMOTO T, KIMURA S, KOBAYASHI K, et al Time series forecasting using a deep belief network with restricted Boltzmann machines[J]. Neurocomputing, 2014, 137 (15): 47- 56
[34]   WU Y, YUAN M, DONG S, et al Remaining useful life estimation of engineered systems using vanilla LSTM neural networks[J]. Neurocomputing, 2017, 275: 16- 179
[35]   ZHANG C, LIM P, QIN A K, et al Multi-objective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28 (10): 2306- 2318
doi: 10.1109/TNNLS.2016.2582798
[36]   HUANG N E, SHEN Z, LONG S R, et al The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings A, 1998, 454 (1971): 903- 995
[37]   熊炘, 杨世锡, 周晓峰 旋转机械振动信号的固有模式函数降噪方法[J]. 浙江大学学报: 工学版, 2011, 45 (8): 1376- 1381
XIONG Xin, YANG Shi-xi, ZHOU Xiao-feng IMF-based denoising method for vibration signal in rotating machinery[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (8): 1376- 1381
[38]   WU Z, HUANG N E Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1 (1): 1- 41
doi: 10.1142/S1793536909000047
[39]   SAHA B, GOEBEL K. " Battery Data Set”, NASA Ames prognostics data repository [DB/OL]. [2016-05-12]. http://ti.arc.nasa.gov/project/prognostic-data-repository/.
[40]   姜媛媛, 刘柱, 罗慧, 等 锂电池剩余寿命的ELM间接预测方法[J]. 电子测量与仪器学报, 2016, 30 (2): 179- 185
JIANG Yuan-yuan, LIU Zhu, LUO Hui, et al ELM indirect prediction method for the remaining life of lithium-ion battery[J]. Journal of Electronic Measurement and Instrumentation, 2016, 30 (2): 179- 185
[1] Jia-hui XU,Jing-chang WANG,Ling CHEN,Yong WU. Surface water quality prediction model based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 601-607.
[2] Jia-ming WU,Zi-qiang CHEN. Fault diagnosis of internal short circuit of lithium battery pack in variable low temperature environment[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1433-1439.
[3] Ping YANG,Dan WANG,Zi-jian KAGN,Tong LI,Li-hua FU,Yue-ren YU. Prediction model of paroxysmal atrial fibrillation based on pattern recognition and ensemble CNN-LSTM[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1039-1048.
[4] Wen-hao WANG,Xiao ZHANG,Yong-jing WAN. Improved deep belief network and its application in voice conversion[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2372-2380.
[5] YANG Bing, WANG Xiao-hua, YANG Xin, HUANG Xiao-xi. Face recognition method based on HOG pyramid[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1564-1569.