Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (10): 1930-1936    DOI: 10.3785/j.issn.1008-973X.2021.10.015
    
Prediction of turning radius of autonomous ship with two propellers
Xiong-dong WANG1(),Zhang-ming PENG1,Hua-chen PAN1,Xiao-qing TIAN1,2,*(),Ze-fei ZHU1,Jian-xing LENG2
1. School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
2. Ocean College, Zhejiang University, Zhoushan 316021, China
Download: HTML     PDF(1362KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A model remote-controlled ship equipped with two propellers was used as the research object. A real-scale three-dimensional hybrid grid was established by using the sliding grid technology. The SST model was used for computational fluid dynamics (CFD) calculations. The self-propulsion simulation of the ship was conducted in the stationary coordinate system. The turning moment of the ship caused by single-propeller propulsion was calculated through the resistance/thrust balance and the eccentric position of the single propeller. A large-area rotating grid including the ship and the propeller was established. The turning characteristics of the ship under two working conditions were numerically simulated. The turning radius can be obtained by using interpolation. A turning experiment was performed on a real ship model with the left propeller speed of 7 560 r/min. The turning radius of the real ship was measured. The relative error between the numerical simulation value and the experimental measurement value was 5.56%. The versatility of the method was verified, and data support was provided for the subsequent precise control of the dual-propeller autonomous surface ship.



Key wordsautonomous ship      differential speed      turning radius      hybrid grid      computational fluid dynamics (CFD)     
Received: 19 November 2020      Published: 27 October 2021
CLC:  U 661  
Fund:  国家自然科学基金资助项目(51709070);浙江省重点研发计划资助项目(2018C04002,2021C03013);浙江省属高校基本科研业务费专项资金资助项目(GK199900299012-026)
Corresponding Authors: Xiao-qing TIAN     E-mail: wangxiongdong@hdu.edu.cn;tianxiaoqing@hdu.edu.cn
Cite this article:

Xiong-dong WANG,Zhang-ming PENG,Hua-chen PAN,Xiao-qing TIAN,Ze-fei ZHU,Jian-xing LENG. Prediction of turning radius of autonomous ship with two propellers. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1930-1936.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.10.015     OR     https://www.zjujournals.com/eng/Y2021/V55/I10/1930


双桨无人船转弯半径预报

采用安装有2个螺旋桨的模型遥控船为研究对象,采用滑移网格技术建立实尺度三维混合网格,运用SST模型进行计算流体力学(CFD)仿真. 对该船在静止坐标系下进行自航模拟,通过阻力/推力平衡和单个螺旋桨的偏心位置计算单螺旋桨推进下船的转弯力矩. 建立包含船、桨在内的大区域旋转网格,对该船2种工况下的转弯特性进行数值模拟. 通过插值,可得转弯半径. 对左侧螺旋桨转速为7 560 r/min的实船模型进行转弯实验,测出实船的转弯半径. 数值模拟值与实验测量值之间的相对误差为5.56%,验证了该方法的通用性,为后续双桨水面无人船的精确控制提供数据支持.


关键词: 无人船,  差速,  转弯半径,  混合网格,  计算流体力学(CFD) 
Fig.1 Drone ship
Fig.2 40F propeller
Fig.3 Three-dimensional grids of hull
Fig.4 Three-dimensional grids of propeller
Fig.5 Three-dimensional grids of hull around
Fig.6 Calculated parts of hull
Fig.7 Moment of force, thrust of propeller and resistance of ship calculated in every time step
Fig.8 Determination of self-navigation match points when rotation speed is between 6 500 and 10 000 r/min
Fig.9 Distribution of freedom surface around right propeller when rotation speed of propeller is 7 560 r/min
Fig.10 Distribution of wave height after ship passed when rotation speed of propeller is 7 560 r/min
Fig.11 Rotation parts
Fig.12 Whole calculated parts
Fig.13 Determination of angular velocity
Fig.14 Distribution of velocity vector when rotation speed of ship is −10.96 r/min
Fig.15 Streamlines of ship when rotation speed of ship is −10.96 r/min
Fig.16 Experimental system of unmanned ship turning radius
Fig.17 Some of experimental records
Fig.18 Location of gravity center of autonomous ship
[1]   陈真义. 小型水面无人船航行状态感知系统研究[D]. 武汉: 武汉理工大学, 2014.
CHEN Zhen-yi. Research on small unmanned surface vehicle sailing state obtaining system [D]. Wuhan: Wuhan University of Technology, 2014.
[2]   张树凯, 刘正江, 张显库, 等 无人船艇的发展及展望[J]. 世界海运, 2015, 38 (9): 29- 36
ZHANG Shu-kai, LIU Zheng-jiang, ZHANG Xian-ku, et al The development and prospect of unmanned craft[J]. Shipping Industry of the World, 2015, 38 (9): 29- 36
[3]   CHEN P F, HUANG Y M, PAPADIMITRIOU E, et al Global path planning for autonomous ship: a hybrid approach of fast marching square and velocity obstacles methods[J]. Ocean Engineering, 2020, 214: 107793
doi: 10.1016/j.oceaneng.2020.107793
[4]   赵英序, 朱景伟, 边涛, 等 基于PMSM的双螺旋桨USV推进系统建模与仿真[J]. 大连海事大学学报:自然科学版, 2018, 44 (1): 17- 24
ZHAO Ying-xu, ZHU Jing-wei, BIAN Tao, et al Modeling and simulation of twin-propeller unmanned surface vehicle propulsion system based on PMSM[J]. Journal of Dalian Maritime University: Natural Science Edition, 2018, 44 (1): 17- 24
[5]   叶金铭, 熊鹰, 孙海涛, 等 空泡螺旋桨诱导的双桨船脉动压力数值预报[J]. 哈尔滨工程大学学报, 2013, 34: 568- 574
YE Jin-ming, XIONG Ying, SUN Hai-tao, et al Numerical prediction of pressure fluctuations induced by cavitating propeller on twin-screw ship[J]. Journal of Harbin Engineering University, 2013, 34: 568- 574
[6]   郭海鹏. 基于CFD的双桨双舵船四自由度MMG模型建模及操纵性预报研究[D]. 上海: 上海交通大学, 2019.
GUO Hai-peng. Research on the CFD-based modeling of 4-DoF MMG model and maneuverability prediction for a twin-propeller twin-rudder ship [D]. Shanghai: Shanghai Jiao Tong University, 2019.
[7]   庄丽帆, 刘源, 凌杰, 等 基于船-桨-舵组合系统舵球节能效果数值预报[J]. 中国水运, 2018, 18 (9): 79- 81
ZHUANG Li-fan, LIU Yuan, LING Jie, et al Numerical prediction of rubber energy saving effects based on boat-propeller-rudder system[J]. China Water Transport, 2018, 18 (9): 79- 81
[8]   齐慧博, 刘业宝, 张克正, 等 基于CFD方法的桨舵干扰非定常水动力性能研究[J]. 中国科技论文, 2017, 12 (7): 725- 728
QI Hui-bo, LIU Ye-bao, ZHANG Ke-zheng, et al Unsteady hydrodynamic performance of propeller and rudder system studied by CFD[J]. China Sciencepaper, 2017, 12 (7): 725- 728
doi: 10.3969/j.issn.2095-2783.2017.07.001
[9]   SAKAMOTO N, KUME K, KAWANAMI Y, et al Evaluation of hydrodynamic performance of pre-swirl and post-swirl ESDs for merchant ships by numerical towing tank procedure[J]. Ocean Engineering, 2019, 178: 104- 133
doi: 10.1016/j.oceaneng.2019.02.067
[10]   祝启波. 基于船-桨-舵全耦合求解的船舶自航性能数值预报方法研究[D]. 镇江: 江苏科技大学, 2016.
ZHU Qi-bo. Numerical prediction method research of ship self-propulsion performance based on hull-propeller-rudder system [D]. Zhenjiang: Jiangsu University of Science and Technology, 2016.
[11]   陈志明, 袁剑平, 严谨, 等 基于MRF方法和滑移网格的螺旋桨水动力性能研究[J]. 船舶工程, 2020, 42 (Supple.1): 157- 162
CHEN Zhi-ming, YUAN Jian-ping, YAN Jin, et al Study on hydrodynamic performance of propeller based on MRF model and sliding mesh[J]. Ship Engineering, 2020, 42 (Supple.1): 157- 162
[12]   林焰, 何靖仪 基于RANS法的船舶动力及自由运动预报[J]. 船舶工程, 2019, 41: 52- 57
LIN Yan, HE Jing-yi Prediction of ship resistance and free motion based on RANS method[J]. Ship Engineering, 2019, 41: 52- 57
[13]   陈如星, 周瑞平, 林晞晨 基于CFX的螺旋桨激振力数值预报研究[J]. 武汉理工大学学报, 2014, 36 (7): 73- 79
CHEN Ru-xing, ZHOU Rui-ping, LIN Xi-chen Numerical simulation of the propeller-induced force based on CFX[J]. Journal of Wuhan University of Technology, 2014, 36 (7): 73- 79
[14]   周晓明. 螺旋桨功率与推力数据库的建立[D]. 杭州: 杭州电子科技大学, 2020.
ZHOU Xiao-ming. Establishment of propeller power and thrust database [D]. Hangzhou: Hangzhou Dianzi University, 2020.
[15]   郭春雨, 张东汗, 王恋舟, 等 近自由液面螺旋桨吸气数值模拟[J]. 华中科技大学学报: 自然科学版, 2019, 47 (2): 81- 86
GUO Chun-yu, ZHANG Dong-han, WANG Lian-zhou, et al Numerical simulation of propeller ventilation near the free surface[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2019, 47 (2): 81- 86
[16]   于苏楠. 带球鼻艏船舶阻力计算及与实测数据的对比[D]. 杭州: 杭州电子科技大学, 2018.
YU Su-nan. Calculation for resistance of a ship with bulbous bow and comparison with experimental data [D]. Hangzhou: Hangzhou Dianzi University, 2018.
[1] Ya-feng YANG,Yi-ping WANG,Zhi-xin CHEN,Jian-jun SU,Bin YANG. Dispersion characteristics of droplet in bus and risk prediction of infection[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 161-167.
[2] Guo-qing HE,Wen-jie ZHAO,Liang WANG. Ventilation and heat transfer modeling in urban utility tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1419-1425.
[3] Song-xing HUANG,Jia-long JIAO,Chao-he CHEN. Ship motion responses in cross wave and related safe navigation strategy[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1473-1481.
[4] Huan-long LIU,Chi-xin XIE,Da-fa LI,Jia-wei WANG. Flow field distribution of splash lubrication of gearbox and churning gear torque loss[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 875-886.
[5] Hao ZHOU,Kun ZHANG,Ya-wei LI,Jia-kai ZHANG. Numerical simulation of fly ash deposition in coal and corn stalk co-combustion with dynamic mesh technique[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1139-1147.
[6] Yong-xiang GAO,Du HONG,You-wei CHENG,Li-jun WANG,Xi LI. Experimental and numerical simulation on sequential three phase jet-loop reactor[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 997-1005.
[7] Yan-ning LU,Hong-tao ZHANG,Yan-wei XU,Yan-qun ZHU,Kai-di WAN,Zhe-ru SHAO,Zhi-hua WANG. Numerical simulation of effects of flue gas recirculation on biomass combustion in grate boiler[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1898-1906.
[8] Shi-tang KE,Wen-lin YU,Lu XU,Ling-yun DU,Wei YU,Qing YANG. Flow fields and aerodynamic loads of wind turbine considering yaw effect under wind and rain interaction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1936-1945.
[9] ZHANG Xin, ZHANG Tian-hang, HUANG Zhi-yi, ZHANG Chi, KANG Cheng, WU Ke. Local loss and flow characteristic of dividing flow in bifurcated tunnel[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 440-445.
[10] CHEN Wei, QIN Xian-rong, YANG Zhi-gang. Wind load characteristics analysis of mast and jib of tower crane[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2262-2270.
[11] CHEN Wen-zhuo, CHEN Yan, ZHANG Wei-ming, HE Shao-wei, LI Bo, JIANG Jun-ze. Numerical simulation for dynamic air spray painting of arc surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2406-2413.
[12] HE Fang xiang, ZHAN Shu lin, QIAN Xiao qian, LAI Jun ying. Numerical simulation on insulation of flat roof ventilation layer[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2397-2402.
[13] YANG Mao,XU Shan-shan. Numerical simulation of aerodynamics of coupled flapping-pitching airfoil with trailing-edge flap[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(1): 149-153.
[14] LUO Yao-zhi, SUN Bin. Wind tunnel test and numerical simulation of wind-induced static pressure field around a building[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1148-1156.
[15] MA Li-sha, ZHOU Wen-hui, GONG Xiao-jin, LIU Ji-lin. Motion constrained generalized Field D* path planning[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1546-1552.