Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (2): 258-267    DOI: 10.3785/j.issn.1008-973X.2019.02.008
Mechanical Engineering     
Numerical simulation on wear-thermal-stress coupling behavior of cap-seal seal and optimization design
Wen-han CAO1(),Jun GONG1,*(),Hong-gang WANG2,Gui GAO1,2,Yuan QI1,Dong-ya YANG1
1. School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Download: HTML     PDF(1716KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The wear of the sealing surface is the key factor resulting in the declination of sealing performance and the loss of seal-life under the condition of oil free lubrication. A numerical simulation method of wear-thermal-stress coupling between seal and piston rod in the process of cap-seal (CL) sealing was established based on the finite element technique and the modified Archard wear model, and the change rule of seal performance and life in the process of wear and the effect of medium pressure on sealing characteristics were analyzed. The key structure parameters of C-ring in CL seal were optimized by applying the orthogonal design method based on the established simulation model, in order to realize the optimization target of getting minimum drop of maximum contact pressure in seal face and maximum seal-life, and the best parameter combination scheme was obtained. The results of numerical simulation and optimization design were verified by the experimental platform of Stirling engine piston rod seal performance test device, and the wear condition of contact surface of CL seal after wear was measured. The result of wear test was consistent with that of numerical simulation, and the sealing performance and life of the CL seal have been greatly improved after optimization, which confirms the accuracy of the numerical simulation method.



Key wordscap-seal (CL) seal      finite element method      thermal      stress      wear      coupling      structure optimization     
Received: 03 April 2018      Published: 21 February 2019
CLC:  TH 137  
Corresponding Authors: Jun GONG     E-mail: cwh_wd@163.com;gongjjdxy@sohu.com
Cite this article:

Wen-han CAO,Jun GONG,Hong-gang WANG,Gui GAO,Yuan QI,Dong-ya YANG. Numerical simulation on wear-thermal-stress coupling behavior of cap-seal seal and optimization design. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 258-267.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.02.008     OR     http://www.zjujournals.com/eng/Y2019/V53/I2/258


盖封密封磨损-热-应力耦合模拟与优化设计

在无油润滑工况下,密封面磨损是导致密封件性能降低及寿命丧失的关键因素. 结合有限元技术,基于修正的Archard磨损模型,建立盖封(CL)密封过程中密封件和活塞杆间的磨损-热-应力耦合数值模拟方法,分析磨损过程中密封件性能与寿命的变化规律及介质压力对密封特性的影响;基于所建立的仿真模型,采用正交试验设计法,以密封件密封面上最大接触压力降幅最小及密封件寿命最长作为优化目标,对CL密封中C形密封圈关键结构参数进行优化设计,得到最优组合方案;利用斯特林发动机活塞杆密封性能试验平台对数值模拟方法进行验证,并对磨损后CL密封接触面磨损状况进行测量,检测结果与仿真模拟结果较为一致,优化后密封件密封性能及使用寿命得到了提高.


关键词: 盖封(CL)密封,  有限元法,  热,  应力,  磨损,  耦合,  结构优化 
Fig.1 Geometric model and key structural parameters of cap-seal seal
Fig.2 Finite element model of cap-seal seal
Fig.3 Von Mises stress distribution of cap-seal seal under three working conditions
Fig.4 Contact pressure distribution of cap-seal seal under three working conditions
Fig.5 Contact pressure distribution of C-ring under different medium pressures
Fig.6 Von Mises stress distribution evolution of cap-seal seal in wear operation process
Fig.7 Contact pressure distribution curve of C-ring in wear operation process
Fig.8 Node temperature curve of C-ring in wear operation process
Fig.9 Wear profile curve of C-ring in wear operation process
Fig.10 Maximum contact pressure curve of C-ring in wear operation process under different medium pressures
N A/mm β/(°) B/mm α/(°)
1 1.6 4 1.6 8
2 1.7 2 1.7 4
3 1.8 0 1.8 0
4 1.9 ?2 1.9 ?4
5 2.0 ?4 2.0 ?8
Tab.1 Level schedule of orthogonal experiment
Fig.11 Orthogonal experiment results of C-ring structure parameters
Fig.12 Range analysis of C-ring structural parameters
结构参数 A/mm β/(°) B/mm α/(°)
优化前 1.8 0 1.8 0
优化后 1.6 ?4 1.9 ?8
Tab.2 Comparison of structural parameters of C-ring before and after optimization
Fig.13 Structure outline of C-ring after optimal design
Fig.14 Comparison of sealing performance of C-ring before and after optimization
Fig.15 Physical map of components for cap-seal seal
Fig.16 Schematic diagram of sealing performance experimental platform for piston rod cap-seal
Fig.17 Curve of medium pressure of sealing chamber versus time
Fig.18 Comparison of wear profile of C-ring before and after optimization
[1]   金东寒. 斯特林发动机技术[M]. 黑龙江:哈尔滨工程大学出版社, 2009.
[2]   谭晶, 杨卫民, 丁玉梅, 等 滑环式组合密封件的研究(Ⅰ): 方形同轴密封件(格来圈)的分析[J]. 润滑与密封, 2007, 32 (1): 53- 55
TAN Jing, YANG Wei-min, DING Yu-mei, et al The study of a sliding ring combined sealing(Ⅰ): the analysis of rectangle co-axial seal[J]. Lubrication Engineering, 2007, 32 (1): 53- 55
[3]   LARSEN T, ROEPSTORFF S, JORDAN H. New PTFE-based material for hydraulic seal applications [C] // 13th Scandinavian International Conference on Fluid Power. Link?ping: Link?ping University Electronic Press, 2013(92): 65–70.
[4]   MAO J, WANG W, LIU Y Experimental and theoretical investigation on the sealing performance of the combined seals for reciprocating rod[J]. Journal of Mechanical Science and Technology, 2012, 26 (6): 1765- 1772
[5]   张教超, 王敏庆, 李海飞 齿形滑环式组合密封的有限元分析[J]. 润滑与密封, 2011, 36 (5): 59- 62
ZHANG Jiao-chao, WANG Min-qing, LI Hai-fei The finite element analysis of tooth and sliding ring combined seal[J]. Lubrication Engineering, 2011, 36 (5): 59- 62
[6]   HUANG Y, SALANT R F Simulation of the effects of a plunge ground rod on hydraulic rod seal behavior[J]. Tribology Transactions, 2013, 56 (6): 986- 996
[7]   欧阳小平, 薛志全, 彭超, 等 航空作动器的VL密封特性分析[J]. 浙江大学学报: 工学版, 2015, 49 (9): 1755- 1761
OUYANG Xiao-ping, XUE Zhi-quan, PENG Chao, et al Performance analysis on VL seal in aircraft cylinder[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (9): 1755- 1761
[8]   欧阳小平, 刘玉龙, 薛志全, 等 航空作动器O形密封材料失效分析[J]. 浙江大学学报:工学版, 2017, 51 (7): 1361- 1367
OUYANG Xiao-ping, LIU Yu-long, XUE Zhi-quan, et al Analysis of material fault of O-ring seal in aircraft cylinder[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (7): 1361- 1367
[9]   WANG Z, DRAPER D, HODAPP T. Radial lip seal simulation using ansys non-standard procedures [C] // International ANSYS Conference. Pittsburgh: Anasys Advantage, 2006: 1–12.
[10]   BéKéSI N, VáRADI K Wear simulation of a reciprocating seal by global remeshing[J]. Periodica Polytechnica Engineering Mechanical Engineering, 2010, 54 (2): 71
[11]   BéKéSI N, VáRADI K, FELH?S D Wear simulation of a reciprocating seal[J]. Journal of Tribology, 2011, 133 (3): 031601
[12]   XIN L, GAO L P, ZHE L Prediction of seal wear with thermal-structural coupled finite element method[J]. Finite Elements in Analysis and Design, 2014, 83 (3): 10- 21
[13]   FR?LICH D, MAGYAR B, SAUER B A comprehensive model of wear, friction and contact temperature in radial shaft seals[J]. Wear, 2014, 311 (1/2): 71- 80
[14]   杨世铭,陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006.
[15]   尹延国, 邢大淼, 尤涛, 等 基于有限元法的面接触摩擦热流分配系数反推研究[J]. 摩擦学学报, 2012, 32 (6): 592- 598
YIN Yan-guo, XING Da-miao, YOU Tao, et al Inverse research on partition coefficient of heat flow under the condition of surface contact friction based on the finite element method[J]. Tribology, 2012, 32 (6): 592- 598
[16]   杨秀萍, 郭津津 单螺杆泵定子橡胶温度场分析[J]. 润滑与密封, 2008, 33 (7): 53- 55
YANG Xiu-ping, GUO Jin-jin Study of temperature field for stator rubber of eccentric screw pump[J]. Lubrication Engineering, 2008, 33 (7): 53- 55
[17]   何健, 李小红, 张治军 聚合物基复合材料摩擦学改性研究新进展[J]. 摩擦学学报, 2012, 32 (2): 199- 208
HE Jian, LI Xiao-hong, ZHANG Zhi-jun Research advances in tribological modification of polymer-based composites[J]. Tribology, 2012, 32 (2): 199- 208
[18]   莫丽, 王军 O形圈动密封特性的有限元分析[J]. 机械科学与技术, 2015, 34 (3): 386- 392
MO Li, WANG Jun Finite element analysis of the dynamic sealing characteristics for O-ring[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34 (3): 386- 392
[19]   TRELOAR L R G. The physics of rubber elasticity [M]. Oxford: Oxford University Press, 1975.
[20]   陈国定, HAISER H, HAAS W, 等 O形密封圈的有限元力学分析[J]. 机械科学与技术, 2000, 19 (5): 740- 741
CHEN Guo-ding, HAISER H, HAAS W, et al Analysis of O-ring seals using the finite element method[J]. Mechanical Science and Technology, 2000, 19 (5): 740- 741
[21]   SAWYER W G, FREUDENBERG K D, BHIMARAJ P, et al A study on the friction and wear behavior of PTFE filled with alumina nanoparticles[J]. Wear, 2003, 254 (5/6): 573- 580
[22]   ARCHARD J F Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24 (8): 981- 988
[23]   王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003.
[24]   曹文翰, 龚俊, 杨东亚, 等 纳米Al2O3/聚苯硫醚改性聚四氟乙烯复合材料摩擦特性 [J]. 高分子材料科学与工程, 2017, 33 (5): 78- 84
CAO Wen-han, GONG Jun, YANG Dong-ya, et al Tribological behavior of nano-Al2O3/PPS reinforced PTFE composites [J]. Polymer Materials Science and Engineering, 2017, 33 (5): 78- 84
[25]   杨东亚. 斯特林发动机活塞杆Leningrader密封性能相关问题研究[D]. 兰州: 兰州理工大学, 2013.
YANG Dong-ya. Research on the Leningrader seal of piston-rod in Stirling engine [D]. Lanzhou: Lanzhou University of Technology, 2013.
[1] Xun CHENG,Jian-bo YU. Monitoring method for machining tool wear based on machine vision[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 896-904.
[2] Teng ZHANG,Xin-long JIANG,Yi-qiang CHEN,Qian CHEN,Tao-mian MI,Piu CHAN. Wrist attitude-based Parkinson's disease ON/OFF state assessment after medication[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 639-647.
[3] Yun-long QIU,Wen-jie HU,Chang-ju WU,Wei-fang CHEN. Heat transfer performance and scale effect of hot spots in embedded microchannel cooling system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 665-674.
[4] Bin ZHU,Nan JIANG,Chuan-bo ZHOU,Yong-sheng JIA,Xue-dong LUO,Ting-yao WU. Blasting seismic effect of buried cast iron pipeline in silty clay layer[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 500-510.
[5] Hai-chao SUN,Wen-jun WANG,Dao-sheng LING. Mechanical properties and microstructure of solidified soil with low cement content[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 530-538.
[6] Can-jun YANG,Zhen-zhe PENG,Ling-hui XU,Wei YANG. Design of flexible knee-joint protection exoskeleton and walking assistance method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 213-221.
[7] Chu-hang YANG,Shao-hui JIA,Ye-cheng MA,Jing-wei ZHU,Yong LIU,Gao-rong HAN. Three-dimensional numerical engineering simulation of oxy-fuel high alumina glass furnace[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 410-418.
[8] Zhong-nan LI,Hai-bo ZHU,Yang ZHAO,Xue LUO,Rong-qiao XU. Thermal stress analysis and crack control of assembled bridge pier[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 46-54.
[9] Qin-ling ZHANG,Zhi-yi HUANG. High temperature properties of SBS modified asphalt mastics in high temperature and high humidity salt environment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 38-45.
[10] Jing-jing LIU,Tie-lin CHEN,Mao-hong YAO,Yu-xin WEI,Zi-jian ZHOU. Experimental and numerical study on slurry fracturing of shield tunnels in sandy stratum[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1715-1726.
[11] Xin-yue LI,Shu-qin CHEN,Hong-liang LI,Yun-xiao LOU,Jia-he LI. Analysis of air-conditioning usage and energy consumption in campus teaching buildings with data mining[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1677-1689.
[12] Hao CHEN,Xin-jie WANG,Jiong WANG,Zhan-wen XI,Yun CAO. Optimization and design of micro-electro-thermal actuator based on Kriging model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1490-1496.
[13] Shuo HUANG,Shuang-qiang WANG,Peng WANG,Gui-yong ZHANG. Comparative study of application of smoothed point interpolation method in fluid-structure interactions[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1645-1654.
[14] Qing-hua LI,Cheng-lan-qing SHU. Experimental study on stress wave propagation in ultra high toughness cementitious composites[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 851-857.
[15] Wu-ming LENG,Qi-shu ZHANG,Fang XU,Hui-kang LENG,Ru-song NIE,Xiu-hang YANG. Additional confining pressure field and enhancement effect of prestressed embankment[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 858-869.