Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (4): 665-674    DOI: 10.3785/j.issn.1008-973X.2021.04.008
    
Heat transfer performance and scale effect of hot spots in embedded microchannel cooling system
Yun-long QIU(),Wen-jie HU,Chang-ju WU*(),Wei-fang CHEN
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1718KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An experimental and theoretical study was presented to analyze the heat transfer performance and the scale effect of hot spots in embedded microchannel liquid cooling system. MEMS micromachining was used to fabricate the test chip, silicon-to-silicon direct bonding was used to bond the microchannel layer to the silicon cover, and Flip-chip bonding was used to bond the test chip to a printed circuit board. Results show that the embedded-microchannel design greatly reduces the thermal conduction distance from the microchip to the microchannel, resulting in a low thermal resistance from the microchip to environment. The test results show that the temperature rise of the simulated IC under a uniform heat flux of 100 W/cm2 can be controlled within 40 K using only 6.84 mW/cm2 of pumping power with a coefficient of performance exceeding 14 000. The existence of hot spots increases the proportion of the heat conduction resistance in the total thermal resistance of the hot spot area under a non-uniform heat flux. The smaller the size of the hot spot area was, the more serious the lateral heat conduction was and the thermal conduction resistance became larger, which indirectly reduced the proportion of the heat convection resistance in the total thermal resistance of the hot spot area. Then the benefit of increasing the convective heat transfer coefficient on decreasing the total thermal resistance of the hot spot area was decreased.



Key wordschip cooling      microchannel      MEMS      hot spot      thermal resistance      heat convection     
Received: 15 September 2020      Published: 07 May 2021
CLC:  TN 30  
Fund:  国家自然科学基金资助项目(51575487);国家自然科学基金重大科研仪器研制项目(6162790014)
Corresponding Authors: Chang-ju WU     E-mail: qyl1992@zju.edu.cn;wuchangju@zju.edu.cn
Cite this article:

Yun-long QIU,Wen-jie HU,Chang-ju WU,Wei-fang CHEN. Heat transfer performance and scale effect of hot spots in embedded microchannel cooling system. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 665-674.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.04.008     OR     http://www.zjujournals.com/eng/Y2021/V55/I4/665


嵌入式微通道传热特性及局部热点尺度效应

通过实验测试结合理论分析,研究嵌入式微通道冷却系统的传热特性及局部热点的尺度效应. 测试芯片加工采用MEMS工艺,微通道层与顶层之间的连接采用硅硅直接键合,芯片与电路板(PCB)之间的连接采用倒装焊接. 研究结果表明,采用嵌入式微通道设计极大地缩短了微芯片到微通道的导热距离,可以显著地减小微芯片到环境的热阻. 根据测试结果可知,在100 W/cm2均匀热流密度的条件下,使用6.84 mW/cm2的泵功,可以将模拟IC热源的温升控制到小于40 K,能效比超过14 000. 在非均匀热流密度的条件下,局部热点的存在会增大导热热阻在总热阻中的占比,局部热点尺度越小,热点附近的侧向热传导越严重,导热热阻越大,这减小了对流换热热阻在热点区域总热阻中的占比,使得增大对流换热系数带来的总热阻降低效果减弱.


关键词: 芯片冷却,  微通道,  MEMS,  局部热点,  热阻,  对流换热 
Fig.1 Schematic diagram and photo of experimental setup
Fig.2 Structure of thin-film Ti/Pt resistance
Fig.3 Fabrication process of test chip
Fig.4 SEM photos of microchannel array
类别 参数 不确定度
直接测量量 冷却介质体积流量 ±0.5%
直接测量量 来流(环境)温度 ±0.2 K
直接测量量 小型电阻温度 ±0.42 K
直接测量量 大型电阻温度 ±0.45 K
直接测量量 压降 ±4.5%(max)
间接测量量 IC-流体总热阻 ±5.0%(max)
Tab.1 Experimental uncertainties of measurements
Fig.5 Variations of thermal resistance components and their proportion in total IC-ambient thermal resistance with flow rate
Fig.6 Effect of large-scale hot spot on temperature rise of simulated IC at qV = 60 mL/min
Fig.7 Effect of large-scale hot spot on thermal resistance of microchannel heat sink at qV = 60 mL/min
Fig.8 Simplified thermal resistance model for hot spot area
Fig.9 Effect of heat flux increase in SHS area on temperature rise of S1 to S7 of No.1 chip at qV = 60 mL/min
Fig.10 Effect of background heat flux on SHS temperature rise of No.1 chip at qV = 60 mL/min
Fig.11 Effect of relative location between SHS and microchannel on SHS temperature rise with background heat flux of 50 W/cm2 and SHS heat flux of 870 W/cm2
Fig.12 Effect of flow rate on LHS temperature rise with background heat flux of 50 W/cm2 and LHS heat flux of 100 W/cm2
Fig.13 Effect of flow rate on SHS temperature rise of No.1 chip with background heat flux of 50 W/cm2 and SHS heat flux of 870 W/cm2
[1]   TURKOT B, CARSON S, LIO A. Continuing Moore's law with EUV lithography [C]// 2017 International Electron Devices Meeting. San Francisco: IEEE, 2017: 14.4. 1-14.4. 3.
[2]   KIM J S, AHN J Mask materials and designs for extreme ultra violet lithography[J]. Electronic Materials Letters, 2018, 14 (5): 533- 547
doi: 10.1007/s13391-018-0058-6
[3]   TU K N Reliability challenges in 3D IC packaging technology[J]. Microelectronics Reliability, 2011, 51 (3): 517- 523
doi: 10.1016/j.microrel.2010.09.031
[4]   SHEN W W, CHEN K N Three-dimensional integrated circuit (3D IC) key technology: through-silicon via (TSV)[J]. Nanoscale Research Letters, 2017, 12 (1): 1- 9
doi: 10.1186/s11671-016-1773-2
[5]   BARCOHEN A Gen-3 thermal management technology: role of microchannels and nanostructures in an embedded cooling paradigm[J]. Journal of Nanotechnology in Engineering and Medicine, 2013, 4 (2): 4
[6]   SOHEL M S M, NIETO C C A A critical review of traditional and emerging techniques and fluids for electronics cooling[J]. Renewable and Sustainable Energy Reviews, 2017, 78 (10): 821- 833
[7]   TUCKERMAN D B, PEASE R F W High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2 (5): 126- 129
doi: 10.1109/EDL.1981.25367
[8]   SARVEY T E, ZHANG Y, CHEUNG C, et al Monolithic integration of a micropin-fin heat sink in a 28-nm FPGA[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2017, 7 (10): 1617- 1624
doi: 10.1109/TCPMT.2017.2740721
[9]   JUNG K W, ZHOU F, ASHEGHI M, et al. Experimental study of single-phase cooling with DI water in an embedded microchannels-3D manifold cooler [C]// 21st Electronics Packaging Technology Conference. Singapore: IEEE, 2019: 164-166.
[10]   ERP R V, SOLEIMANZADEH R, NELA L, et al Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585: 211- 216
doi: 10.1038/s41586-020-2666-1
[11]   HAO X, PENG B, XIE G, et al Efficient on-chip hotspot removal combined solution of thermoelectric cooler and mini-channel heat sink[J]. Applied Thermal Engineering, 2016, 100: 170- 178
doi: 10.1016/j.applthermaleng.2016.01.131
[12]   WANG P, BAO Y, BARCOHEN A Mini-contact enhanced thermoelectric coolers for on-chip hot spot cooling[J]. Heat Transfer Engineering, 2009, 30 (9): 736- 743
doi: 10.1080/01457630802678391
[13]   MANNO M, BAO Y, BARCOHEN A Near-junction “hot Spot” suppression with integral SiC microcontact TEC[J]. International Journal of Heat and Mass Transfer, 2017, 115: 530- 536
doi: 10.1016/j.ijheatmasstransfer.2017.07.081
[14]   LEE Y J, SINGH P K, LEE P S Fluid flow and heat transfer investigations on enhanced microchannel heat sink using oblique fins with parametric study[J]. International Journal of Heat and Mass Transfer, 2015, 81: 325- 336
doi: 10.1016/j.ijheatmasstransfer.2014.10.018
[15]   LEE Y J, LEE P S, CHOU S K Hotspot mitigating with obliquely finned microchannel heat sink-an experimental study[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3 (8): 1332- 1341
doi: 10.1109/TCPMT.2013.2244164
[16]   SHARMA C S, SCHLOTTIG G, BRUNSCHWILER T, et al A novel method of energy efficient hotspot-targeted embedded liquid cooling for electronics: an experimental study[J]. International Journal of Heat and Mass Transfer, 2015, 88: 684- 694
doi: 10.1016/j.ijheatmasstransfer.2015.04.047
[17]   SHARMA C S, TIWARI M K, ZIMMERMANN S, et al Energy efficient hotspot-targeted embedded liquid cooling of electronics[J]. Applied Energy, 2015, 138: 414- 422
doi: 10.1016/j.apenergy.2014.10.068
[18]   NASR M H, GREEN C E, KOTTKE P A, et al Hotspot thermal management with flow boiling of refrigerant in ultrasmall microgaps[J]. Journal of Electronic Packaging, 2017, 139 (1): 1- 8
[19]   WADDELL A M, PUNCH J, STAFFORD J, et al The characterization of a low-profile channel–confined jet for targeted hot-spot cooling in microfluidic applications[J]. International Journal of Heat and Mass Transfer, 2016, 101: 620- 628
doi: 10.1016/j.ijheatmasstransfer.2016.04.108
[20]   QIU Y L, HU W J, WU C J, et al An experimental study of microchannel and micro-pin-fin based on-chip cooling systems with silicon-to-silicon direct bonding[J]. Sensors, 2020, 20: 5533
doi: 10.3390/s20195533
[1] Jing-zhi ZHANG,Wu-kai CHEN,Nai-xiang ZHOU,Li LEI,Fu-shun LIANG. Experiment study on formation and length of droplets in T-junction microchannels[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1007-1013.
[2] Yi-yu LIN,Xu-dong ZHENG,Hai-bin WU,Zhi-peng MA,Zhong-he JIN. MEMS gyroscopes parametric excitation control scheme with constant resonant frequency[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1795-1804.
[3] Xian-biao BU,Yun-min RAN,Ling-bao WANG,Jun-min LEI,Hua-shan LI. Analysis of key factors affecting single well geothermal heating[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 957-964.
[4] Song-tao JIN,Chang LIU,Li-ying WANG,Yang YANG. Heat transfer coefficient of passive house exterior wall in cold area[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1966-1976.
[5] CAO Yun, XI Zhan-wen, WANG Jiong, NIE Wei-rong, KONG Nan. Influence of UV-LIGA fabrication error on MEMS omnidirectional inertial switch's performance[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1815-1823.
[6] SHEN Teng, WANG Jiong, HUANG Liu. Theoretical and experimental study on capillary burst valve under centrifugal environment[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1578-1584.
[7] WU Jiang hong, XUE Zhi qiang, JIN Peng, LI Hui xi. Temperature maldistribution in micro-channel heat exchanger applied to electrical vehicle’s heat pump air conditioning[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1537-1544.
[8] LI Xiao hua, BAO Wei wei, WANG Jing, LI Hui xia, CAI Yi xi. Heat dissipation of LED headlamps based on corona discharge[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1284-1289.
[9] WANG Jing, CAI Yi xi, BAO Wei wei, LI Hui xia. Experimental study of high power LEDs enhanced cooling performance by ionic wind[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1952-1958.
[10] XIANG Tian, WANG Hao, MENG Tao, JIN Zhong-he. Real-time on-orbit calibration method for three-axis magnetometer and MEMS gyroscope[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 541-547.
[11] SUN Xiao-hong, ZHANG Xiao-dong, HU Shan-wen, DAI Wen-hua, GAO Huai. Distributed electro-thermal RF-LDMOS model[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 831-834.
[12] LIN Lin, WU Rui, ZHANG Xin-xin. Optimization for geometric parameters of micro-channel heat sink
using inverse problem method
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(4): 734-740.
[13] ZHANG Song-hong,YUN Jun-xian,SHEN Sao-chuan,CHEN Zhuo,YAO Ke-jian, CHEN Ji-zhong. Formation of solid lipid nanoparticles and its mass transfer
mechanisms in axle dual microchannels
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(3): 544-550.