Please wait a minute...
J4  2011, Vol. 45 Issue (4): 734-740    DOI: 10.3785/j.issn.1008-973X.2011.04.024
    
Optimization for geometric parameters of micro-channel heat sink
using inverse problem method
LIN Lin, WU Rui, ZHANG Xin-xin
Department of Thermal Engineering, University of Science and Technology Beijing, Beijing 100083, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A multi-parameters optimization approach was developed to search for the optimal geometric design for microchannel heat sink by integrating the simplified conjugate-gradient scheme into a fully three-dimensional heat transfer flow model. The effect of the pumping power on the micro-channel heat sink geometry was analyzed. With the constant heat flux passing through a given bottom surface of heat sink, the higher pumping power may induce the variation of the optimal geometric structure parameters such as the reduction of the width ratio of the channel-to-pitch along with the increase of the channel number of the heat sink and the aspect ratio. The global thermal resistance of the optimal heat sink can be decreased by increasing the pumping power, but the corresponding reduced amplitude is much smaller than that caused by lower pumping power.



Published: 05 May 2011
CLC:  TK 91  
Cite this article:

LIN Lin, WU Rui, ZHANG Xin-xin. Optimization for geometric parameters of micro-channel heat sink
using inverse problem method. J4, 2011, 45(4): 734-740.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.04.024     OR     http://www.zjujournals.com/eng/Y2011/V45/I4/734


微通道热沉几何结构的多参数反问题优化

提出微通道热沉几何结构的多参数反问题优化方法,其正向求解器是微通道热沉三维数值模型,反向求解器为简化的共轭梯度法,分析泵功的变化对热沉几何结构的影响.结果表明,在热沉换热面积和热表面热流密度恒定的条件下,随着泵功的增加,相应的最优热沉几何结构参数随之变化,即最优热沉的流道数和流道高宽比增加,流道比降低;泵功的增加使最优热沉的全局热阻降低,但在高泵功下全局热阻的降低幅度远低于在低泵功下的降低幅度.

[1] TUCKERMAN D B, PEASE R F W. Highperformance heat sinking for VLSI [J]. IEEE Electron Device Letter EDL2, 1981: 126-129.
[2] LI J, PETERSON G P, CHENG P. Threedimensional analysis of heat transfer in a micro heat sink with single phase flow [J]. International Journal of Heat and Mass Transfer, 2004, 47(19/20): 4215-4231.
[3] RYU J H, CHOI D H, KIM S J. Numerical optimization of the thermal performance of a microchannel heat sink [J]. International Journal Heat and Mass Transfer, 2002, 45(13): 2823-2827.
[4] CHEN C W, LEE J J, KOU H S. Optimal thermal design of microchannel heat sinks by the simulated annealing method [J]. International Communications in Heat and Mass Transfer, 2008, 35(8): 980-984.
[5] CHEIN R, CHEN J. Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance [J]. International Journal of Thermal Sciences, 2009, 48(8): 1627-1638.
[6] KAWANO K, MINAKAMI K, IWASAKH I, et al. Development of micro channels heat exchanging [J]. JSME International Journal, 2001, 44(4): 592-598.
[7] QU W, MUDAWAR I. Experimental and numerical study of pressure drop and heat transfer in a singlephase microchannel heat sink [J]. International Journal of Heat and Mass Transfer, 2002, 45(12): 2549-2565.
[8] TISELJ I, HETSRONI G, MAVKO B, et al. Effect of axial conduction on the heat transfer in microchannels [J]. International Journal of Heat and Mass Transfer, 2004, 47(12/13): 2551-2565.
[9] LEE P, GARIMELLA S V, LIU D. Investigation of heat transfer in rectangular microchannels [J]. International Journal of Heat and Mass Transfer, 2005, 48(9): 1688-1704.
[10] WEISBERG A, BAU H H, ZEMEL J N. Analysis of microchannels for integrated cooling [J]. International Journal of Heat and Mass Transfer, 1992, 35(10): 2465-2474.
[11] HWANG L T, TURLIK I, REISMAN A. Thermal module design for advancing packaging [J]. Journal of Electronic Materials, 1987, 16(5): 347-355.
[12] KNIGHT R W, GOODLING J S, HALL D J. Optimal thermal design of forced convection heat sinksanalytical [J]. Journal of Electronic Packaging, 1991, 113(3): 313-321.
[13] KNIGHT R W, HALL D J, GOODLING J S, et al. Heat sink optimization with application to micro channels [J]. IEEE Transactions on Components Hybrids and Manufacturing Technology, 1992, 15(5): 832-842.
[14] WEN Z, CHOO K F. Optimum thermal design of microchannel heat sinks [C]∥ IEEE/CPMT Electronic Packaging Technology Conference. Singapore: IEEE, 1997: 23-129.
[15] CHEIN R, CHEN J. Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance [J]. International Journal of Thermal Sciences, 2009, 48(8): 1627-1638.
[16] LI J, PETERSON G P. Geometric optimization of a micro heat sink with liquid flow [J]. IEEE Transactions on Components and Packaging Technology, 2006, 29(1): 145-154.
[17] LI J, PETERSON G P. 3dimensional numerical optimization of siliconbase high performance parallel microchannel heat sink with liquid flow [J]. International Journal of Heat and Mass Transfer, 2007, 50(15/16): 2895-2904.
[18] BELLOOCHENDE T, LIEBENBERG L, MEYER J P. Constructal cooling channels for microchannel heat sinks [J]. International Journal of Heat and Mass Transfer, 2007, 50(21/22): 4141-4150.
[19] KOU H S, LEE J J, CHEN C W. Optimum thermal performance of microchannel heat sink by adjusting channel width and height [J]. International Communications in Heat and Mass Transfer, 2008, 35(5):577-582.
[20] WANG X D, HUANG Y X, CHENG C H, et al. An inverse geometry design problem for optimization of single serpentine flow field of PEM fuel cell [J]. International Journal of Hydrogen Energy, 2010, 35(9): 4247-4257.

[1] ZHU Qiao-qiao, WANG Zhi-hua, YANG Jian, ZHANG Yan-wei, ZHOU Jun-hu, CEN Ke-fa. Experimental study of influence of iodine content on Bunsen reaction
in the sulfur-iodine cycle for hydrogen production
[J]. J4, 2011, 45(10): 1786-1790.
[2] QIAN Miao, MEI De-qing, LIU Bin-hong,CHEN Zi-chen. Heat and mass transfer characteristics in reforming micro-reactor with micro-pin-fin arrays[J]. J4, 2011, 45(8): 1387-1392.
[3] YANG Jian,WANG Zhi-hua,ZHANG Yan-wei,CHEN Yun,ZHOU Jun-hu,CEN Ke-fa. Process design and simulation of open-loop sulfur-iodine
thermo-chemical cycle for hydrogen production
[J]. J4, 2011, 45(5): 869-877.