Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Energy engineering     
Temperature maldistribution in micro-channel heat exchanger applied to electrical vehicle’s heat pump air conditioning
WU Jiang hong, XUE Zhi qiang, JIN Peng, LI Hui xi
1. College of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China; 
2. Beijing Automotive Research Institute Limited Company Beijing 101300, China;
3. Ingersoll Rand (China) Limited Company Guangzhou 510620, China
Download:   PDF(2539KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Surface temperature maldistribution(STM) of micro-channel heat exchanger(MCHE) was analyzed and its influence to performance of heat pump air conditioning system (HPACS) for electrical vehicles was discussed. Performance of HPACS which had applied designed inlet distributor was tested. STM of outdoor MCHE under cooling/heating working condition was monitored by infrared radiometer.Temperature unevenness (χ) of areas vertical to the flow direction was adopted to evaluate MCHE’s STM. Two BP neural networks were construted to predict cooling/heating performance under different working condition, refrigerant flow and STM. Influence weights of inputs to output were obtained for BP neural networks. Results show that when MCHEs are used as condenser and evaporator, influence weights of STM to the HPACS’s performance are 34.97% and 43.90% respectively. It is more beneficial to improve refrigerant maldistribution of two-phase flow than gas-phase flow.



Published: 01 August 2016
CLC:  TK 172  
Cite this article:

WU Jiang hong, XUE Zhi qiang, JIN Peng, LI Hui xi. Temperature maldistribution in micro-channel heat exchanger applied to electrical vehicle’s heat pump air conditioning. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1537-1544.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.08.016     OR     http://www.zjujournals.com/eng/Y2016/V50/I8/1537


电动汽车热泵空调微通道换热器温度分布特性

为了探讨微通道换热器温度分布特性对电动汽车热泵空调系统性能的影响,对应用新型微通道换热器入口分配器的电动汽车热泵系统进行性能测试,采用红外热成像仪记录制冷/制热工况下车外换热器温度分布变化情况.采用与换热器沿程方向垂直的温度不均匀度χ(温度标准方差)作为微通道换热器温度不均特性的度量.建立制冷制热工况2个BP神经网络模型,预测在不同运行工况、制冷剂流量、温度分布特性情况下系统的能效.神经网络的权重分析结果表明:对于所设计的电动汽车热泵空调系统,当微通道换热器被用作冷凝器和蒸发器时,换热器表面温度分布不均对系统性能的影响权重分别为34.97%和43.90%,改善气液两相的分配均匀性比改善气相的分配均匀性更利于系统性能的提升.

[1] PETTERSEN J, HAFNER A, SKAUGEN G, Development of compact heat exchangers for CO2 airconditioning system. [J]. International Journal of Refrigeration. 1998, 21(3): 180-193.
[2] 巫江虹,谢方,刘超鹏,等.电动汽车热泵空调系统微通道换热器适应性研究[J].机械工程学报,2012, 48(14): 141-147.
WU Jianghong, XIE Fang,LIU Chaopeng et al. Adaptability research on microchannel heat exchanger applied to heat pump air conditioning system for electrical vehicle [J].Journal of Mechanical Engineering, 2012, 48(14): 141-147.
[3] 杜正建,鲁红亮.微通道冷凝器平行扁管温度不均匀分布的实验研究[C]∥第六届全国制冷空调新技术研讨会论文集.武汉:中国制冷学会,2010: 838-844.
DU Zhengjian, LU Hongliang. Experimental research on uneven temperature distribution in parallel flat tubes of 6pass microchannel condenser[C]∥The Sixth New Technology Seminar of National Refrigeration and Air Conditioning. Wuhan: Chinese Association of Refrigeration,2010: 838-844.
[4] 鲁红亮,陶红歌,胡云鹏.平行流换热器中热流体分布均匀性的研究进展[J].制冷学报,2010,31(6): 39-45.
LU Hongliang, TAO Hongge, HU Yunpeng. Stateoftheart of Thermofluid uniform distribution in microchannel heat exchanger[J].Journal of Refrigeration, 2010, 31(6): 39-45.
[5] HWANG Y, JIN D H, RADERMACHER R. Refrigerant distribution in microchannel evaporators[C]∥Proceedings of International Congress of Refrigeration 2007. Beijing: International Congress of Refrigeration, 2007: 17.
[6] CHOI J M, PAYNE V, DOMANSKI P A. Effects of nonuniform refrigerant and air flow distribution on finnedtube evaporator performance [C]∥ Proceedings of International Congress of Refrigeration 2003. Washington DC: International Congress of Refrigeration, 2003: 18.
[7] SHI J, QU X, QI Z, et al. Investigating performance of microchannel evaporators with different manifold structures [J].International Journal of Refrigeration, 2011,34(1): 292-302.
[8] KULKARNI T, BULLARD C W, CHO K. Header design tradeoffs in microchannel evaporators[J].Applied Thermal Engineering, 2004, 24(5): 759776.
[9] 严瑞东,徐博,陈江平,等.微通道换热器两相分配特性对空调系统性能的影响[J].制冷学报,2013,34(03): 20-23.
YAN Ruidong,XU Bo,CHEN Jiangpin, et al. The impact on air conditioning system of twophase distribution in microchannel heat exchanger [J].Journal of Refrigeration, 2013, 34(03): 20--23.
[10] 杨兆光.电动汽车热泵型空调系统动态特性研究[D].广州:华南理工大学,2013: 36-50.
YAN Zhaoguang, Dynamic performance of heat pump air conditioning for electric vehicle[D].Guangzhou: South China University of Technology, 2013: 36-50.
[11] GB/T 213612008.汽车用空调器[S].中国:中国国家标准化管理委员会,2008.
GB/T 213612008. Motor vehicle air conditioning unit[S].China: Standardization Administration of the People’s Republic of China, 2008.
[12] QC/T 6572000.汽车空调制冷装置试验方法[S].中国:全国汽车标准化技术委员会,2000.
QC/T 6572000. Test method for motor vehicle airconditioning unit.[S].China: National Technical Committee of Auto Standardization, 2000.
[13] VIST S, PETTERSEN J. Twophase flow distribution in compact heat exchanger manifolds [J]. Experimental Thermal and Fluid Science, 2004, 28(2): 209-215.
[14] 邱宏,王友.空气源热泵空调的一种新型除霜控制模式[J].流体机械,2009,37(9): 83-86.
QIU Hong,WANG You. New type of defrost control mode for air resource heat pump air conditioner system [J]. Fluid Machinery, 2009,37 (9): 83-86.
[15] TB/T 18042009.铁道客车空调机组[S].中国:中华人民共和国铁道部,2009.
TB/T 18042009. Air conditioning unit for railway passenger car.[S].China: Ministry of Railways of the People’s Republic of China, 2009.
[16] 周品.MATLAB神经网络设计与应用[M].北京:清华大学出版社,2013,153-184.
[17] SAAD S B, CLMENT P, FOURMIGU J F, et al. Single phase pressure drop and twophase distribution in an offset strip fin compact heat exchanger [J].Applied Thermal Engineering, 2012, 49(1): 99-105.
[18] 孙会君,王新华.应用人工神经网络确定评价指标的权重[J].山东科技大学学报.2001,20(3): 84-86.
SUN Huijun,WANG Xinhua. Determination of the weight of evaluation indexes with artificial neural network method [J]. Journal of Shandong University of Science and Technology. 2001, 20(3): 84-86.
 
[1] ZHANG Lin lin, ZHAO Lei, YANG Liu. Soil temperature response and recovery characteristics of intermittent heat emission in multi boreholes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 299-305.
[2] DONG Yong-shen, WANG Ding-biao, XIANG Sa, XIA Chun-jie. Numerical simulation of double-pipe heat exchanger enhanced by oblique helical fins[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 309-314.
[3] GUO Hai, NI Yi-hua, WANG Jin, LU Guo-dong. Multi-objective performance optimization method of automotive air-conditioning condenser[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 142-159.
[4] YAO Hua, SHENG De-ren, CHEN Jian-hong, LI Wei, HONG Rong-hua. Thermodynamic analysis of gravity heatpipe steam generator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(9): 1678-1684.
[5] YAN Wei-guo, YU Xiao-li, LU Guo-dong, ZHOU Jian-wei. Heat transfer and pressure drop of heat pipe heat exchanger[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(1): 132-135.