Please wait a minute...
J4  2012, Vol. 46 Issue (9): 1678-1684    DOI: 10.3785/j.issn.1008-973X.2012.09.020
    
Thermodynamic analysis of gravity heatpipe steam generator
YAO Hua, SHENG De-ren, CHEN Jian-hong, LI Wei, HONG Rong-hua
Institute of Thermal Science and Power System, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to excavate the potential of recovering waste heat for heatpipe steam generator, based on the entransy dissipation theory, the expressions of dimensionless parameters( exergy dissipation number( EXDN ) and entransy dissipation number( ENDN ) ) were derived, respectively, when considering or not the viscous dissipation. After that, some influence factors including the velocity of wind side at the inlet in the flue gas side of heat-pipe steam generator, the outer diameter and the length of evaporation section of heat pipe, for EXDN and ENDN were analyzed according to an engineering case, and some suggestions about the design of heatpipe steam generator were given. Analysis shows that the change trends of EXDN and ENDN are the same with the temperatureexergy dissipation when not considering the viscous dissipation, and when considering the viscous dissipation, the change trends of EXDN and ENDN are the same with the product of temperature-exergy dissipation and pressure-exergy dissipation, and ENDN is more sensitive to the changes of the above mentioned influence factors than EXDN. These explain that it is feasible for EXDN and ENDN to be used as the evaluation indexes of the irreversibility during the heat transfer process between cold and hot working fluids for heat-pipe steam generator. The method mentioned above can offer beneficial references for the research of thermodynamic performance of heat pipe equipments recovering waste heat.



Published: 01 September 2012
CLC:  TK 123  
  TK 172.4  
Cite this article:

YAO Hua, SHENG De-ren, CHEN Jian-hong, LI Wei, HONG Rong-hua. Thermodynamic analysis of gravity heatpipe steam generator. J4, 2012, 46(9): 1678-1684.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.09.020     OR     http://www.zjujournals.com/eng/Y2012/V46/I9/1678


重力热管蒸汽发生器热力学分析

为挖掘热管蒸汽发生器回收余热的潜能,基于耗散理论,对不考虑黏性耗散影响和考虑黏性耗散影响的两种情况,分别推导出无量纲参数(耗散数和耗散数)的表达式,并结合工程案例,分析了热管蒸汽发生器烟气侧入口处迎风面流速、热管外径及热管蒸发段长度等参数对耗散数和耗散数的影响,并给出一些有关热管蒸汽发生器设计的建议.研究表明:当不考虑黏性耗散影响时,耗散数和耗散数的变化趋势与温度耗散的变化趋势相同;当考虑黏性耗散影响时,耗散数和耗散数的变化趋势与温度耗散和压力耗散乘积的变化趋势相同,且耗散数比耗散数对迎风面流速、热管外径和热管蒸发段长度等参数变化的响应更敏感.上述方法为热管余热回收装置的热力学性能研究提供了参考.

[1] KHALKALI H, FAGHRI A, ZUO Z J. Entropy generation in a heat pipe system [J]. Applied Thermal Engineering, 1999, 19(10): 1027-1043.
[2] PRASHER R S. A simplified conduction based modeling scheme for design sensitivity study of thermal solution utilizing heat pipe and vapor chamber technology [J]. Journal of Electronic Packaging, Transactions of the ASME, 2003, 125(3): 378-385.
[3] KIM C J, YOO B O, PARK Y J. An experimental study of a twophase closed loop thermosyphon with dual evaporator in parallel arrangement [J]. Journal of Mechanical Science and Technology, 2005, 19(1): 189-198.
[4] ZIAPOUR B M, SHAKER H. Heat transfer characteristics of a twophase closed thermosyphon using different working fluids [J]. Heat Mass Transfer, 2010, 46(3): 307-314.
[5] PARAMETTHANUWAT T, RITTIDECH S, PATTIYA A. A correlation to predict heattransfer rates of a twophase closed thermosyphon (TPCT) using silver nanofluid at normal operating conditions [J]. International Journal of Heat and Mass Transfer, 2010, 53(21/22): 4960-4965.
[6] GUO Z Y, ZHU H Y, LIANG X G. Entransy — a physical quantity describing heat transfer ability [J]. International Journal of Heat and Mass Transfer, 2007, 50(13/14): 2545-2556.
[7] LIU X B, MENG J A, GUO Z Y. Exergy generation extremum and entransy dissipation extremum for heat exchanger optimization [J]. Chinese Science Bulletin, 2009, 54(6): 943-947.
[8] 柳雄斌, 过增元. 换热器性能分析新方法 [J]. 物理学报, 2009, 58(7): 4766-4771.
LIU Xiongbin, GUO Zengyuan. A novel method for heat exchanger analysis [J]. Acta Physica Sinaca, 2009, 58(7): 4766-4771.
[9] 许明田, 程林, 郭江峰. 耗散理论在换热器设计中的应用 [J]. 工程热物理学报, 2009, 30(12): 2090-2092.
XU Mingtian, CHENG Lin, GUO Jiangfeng. An application of entransy dissipation theory to heat exchanger design [J]. Journal of Engineering Thermophysics, 2009, 30(12): 2090-2092.
[10] GUO J F, XU M T, CHENG L. Principle of equipartition of entransy dissipation for heat exchanger design [J]. Science China: Technological Sciences, 2010, 53(5): 1309-1314.
[11] XIA S J, CHEN L G, SUN F R. Optimal paths for minimizing entransy dissipation during heat transfer processes with generalized for radiative heat transfer law [J]. Applied Mathematical Modelling, 2010, 34(8): 2242-2255.
[12] XIAO Q H, CHEN L G, SUN F R. Constructal design for a steam generator based on dissipation extremum principle [J]. Science China: Technological Sciences, 2011, 54(6): 1462-1468.
[13] CHEN L G, WEI S H, SUN F R. Constructal entransy dissipation rate minimization of a disc [J]. International Journal of Heat and Mass Transfer, 2011, 54(1/2/3): 210-216.
[14] XIAO Q H, CHEN L G, SUN F R. Constructal entransy dissipation rate minimization for “discpoint” heat conduction [J]. Chinese Science Bulletin, 2011, 56(1): 102-112.
[15] XIAO Q H, CHEN L G, SUN F R. Constructal entransy dissipation rate minimization for heat conduction based on a tapered element [J]. Chinese Science Bulletin, 2011, 56(22): 2400-2410.
[16] WEI S H, CHEN L G, SUN F R. Constructal entransy dissipation minimization of round tube heat exchanger crosssection [J]. International Journal of Thermal Sciences, 2011, 50(7): 1285-1292.
[17] 庄骏, 张红. 热管技术及其工程应用 [M]. 北京: 化学工业出版社, 2000:67,73-76,189,199-201.
[18] 宋之平, 王加璇. 节能原理 [M]. 北京: 水利电力出版社, 1985:236-238.
[19] YAO H, SHENG D R, CHEN J H, et al. Comparative study on associated energy combined cycle system schemes in ironmaking process [C]∥Proceedings of 2010 International Conference on Energy Sources and Smart Grids Development. Jilin: Intelligent Information Technology Application Research Association Press, 2010: 92-95.
[20] 黄问盈, 金勇杰. 热管与热管换热器设计基础 [M]. 北京: 中国铁道出版社, 1995:41-44.

[1] GUO Yi-nan, LEI Gang, WANG Tian-xiang, WANG Kai, SUN Da-ming. Numerical simulation of Taconis thermoacoustic oscillation[J]. J4, 2014, 48(2): 327-333.
[2] ZHAO Rui-dong, WU Zhang-hua, LUO Er-cang, DAI Wei. Study on the basic experimental rig for thermoacoustic system[J]. J4, 2013, 47(2): 308-313.
[3] YAO Hua, SHENG De-ren, LIN Zhang-xin, SONG Si-yuan,CHEN Jian-hong, LI Wei. Thermodynamic performance analysis of associated energy
 combined cycle system in ironmaking process
[J]. J4, 2011, 45(11): 2008-2013.
[4] NIE Xiang-hong, YU Xiao-li, CHEN Ping-lu, FANG Yi-dong. Theoretical analysis of available energy and efficiency in liquid
nitrogen engine cycle
[J]. J4, 2010, 44(11): 2159-2163.
[5] HU Jun-Jiang, SHU Xiao-Chi, NIE Xiang-Gong, et al. Feasibility of parallel airpowered and diesel hybrid engine[J]. J4, 2009, 43(09): 1632-1637.