Please wait a minute...
J4  2011, Vol. 45 Issue (5): 831-834    DOI: 10.3785/j.issn.1008-973X.2011.05.009
    
Distributed electro-thermal RF-LDMOS model
SUN Xiao-hong1,3, ZHANG Xiao-dong2, HU Shan-wen1,3, DAI Wen-hua4, GAO Huai1,3
1.National ASIC System Engineering Research Center, Southeast University, Nanjing 210096, China;
2.Suzhou Innotion Tech. Co., Ltd.,Suzhou 215123,China;3.High Frequency & High Power Device and Integrated
Technology Research Center, Research Institute of Southeast University at Suzhou, Suzhou 215123, China;
4.Infineon Technologies North America Corp, 18275 Serene Drive,Morgan Hill, CA 95037 United States
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To develop an accurate RF-LDMOS large signal model, temperature distribution across a multi-finger device was researched. Using the three dimensional image method, temperature distribution across a finger was easily calculated. Furtherly, for multiple fingers, lateral temperature distribution could be obtained under the superposition principle. A thermal matrix was used to describe the model and the thermal parameters were obtained by fitting with the calculation results. Compared with the traditional thermal model, this model can be used to characterize the heat transferring horizontally by using mutual thermal resistances between fingers and the average thermal resistance network is replaced by distributed thermal RC network to model the multi-fingers. The calculation results show that it can present the temperature distribution and predict the average thermal resistance of scaling devices more accurately.



Published: 24 November 2011
CLC:  TN 386  
Cite this article:

SUN Xiao-hong, ZHANG Xiao-dong, HU Shan-wen, DAI Wen-hua, GAO Huai. Distributed electro-thermal RF-LDMOS model. J4, 2011, 45(5): 831-834.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.05.009     OR     https://www.zjujournals.com/eng/Y2011/V45/I5/831


用于RF-LDMOS的分布式电热耦合模型

为建立精确的RF-LDMOS大信号模型,提出分布式电热耦合模型.通过采用三维镜像法简单计算单指条的温度分布,进一步使用叠加原理计算得到多指条温度的横向分布,此模型的解析式使用热矩阵方程来表示,通过对计算结果的拟合提取热模型参数.与传统热模型相比,此热模型通过使用指条之间的互热阻表征横向热流的相互作用,同时以分布的热RC网络为多指条建模,代替平均热电阻网络模型.计算结果表明,使用分布式电热耦合模型不仅能更精确反映温度的分布效应,而且可用于等比例缩放时更准确的预测平均热电阻.

[1] 袁义生,钱兆明. 分析传导EMI的功率MOSFET建模[J]. 浙江大学学报:工学版,2003,37(2):198-204.
YUAN Yisheng, QIAN Zhaoming. Modeling of power MOSFET for conducting EMI analysis [J]. Journal of Zhejiang University: Engineering Science, 2003, 37(2):198-204.
[2] COLLANTES J M, RAOUX J J, QUERE R. New measurementbased technique for RF LDMOS nonlinear modeling [J]. IEEE Microwave and Guided Wave Letters, 1998, 8(10): 345-347.
[3] CURTICE W R, PLA J A, BRIDGES D, et al. A new dynamic electrothermal nonlinear model for silicon RF LDMOSFETs[C]∥1999 IEEE MTTS Digest. Anaheim, CA, USA: IEEE, Piscataway, NJ, 1999: 419-422.
[4] ROBLIN P, AKHTAR S, STRAHLER J. New nonquasistatic theory for extracting smallsignal parameters applied to LDMOSFETs [J]. IEEE Microwave and Guided Wave Letters, 2000, 10(8): 322-324.
[5] AKHTAR S, ROBLIN P, STRAHLER J. Isothermal DC and microwave characterizations of power RF silicon LDMOS [J]. IEEE Transactions on Electron Devices, 2001, 12(48):2785-2789.
[6] HSU J T, QUOC L V. A rational formulation of thermal circuit models for electrothermal simulation  part I: finite element method [J]. IEEE Transactions on Circuits and SystemsI: Fundamental Theory and Applications, 1996, 43(9): 721-732.
[7] FUKAHORI K, GRAY P R. Computer simulation of integrated circuits in the presence of electrothermal interaction [J]. IEEE Transactions on SolidState Circuits, 1987, 11(6): 834-846.
[8] LETURCQ P, DORKEL J M, NAPIERALSKI A, et al. A new approach to thermal analysis of powerdevices and circuits [J]. IEEE Transaction on Electron Devices, 2002, 49(4): 679-68.
[9] RINALDI N. Generalized image method with application to the thermal modeling of power devices [J]. IEEE Transactions on Electron Devices, 1987, 34(5): 1147-1156.

[1] LI Jiang, HUANG Yi-jun, LIU Zheng, LIU Xiao-hui, BAO Ye-hua, CHU Jia-mei. Reproducibility of acupuncture point’s impedance based on
Hausdorff distance
[J]. J4, 2011, 45(10): 1777-1780.
[2] SHU Ke-Han, DONG Shu-Rong, HAN Yan, et al. ESD protection of NMOS device at different gate bias[J]. J4, 2010, 44(1): 141-144.