Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (7): 1362-1368    DOI: 10.3785/j.issn.1008-973X.2020.07.015
    
Dimensionless material cost model of media gas-gas heat exchangers
Kai HUANG1,2(),Zhi-jian SUN1,2,*(),Wen-ying QIAN1,2,Ji-hu YANG1,2,Zi-tao YU1,3,Ya-cai HU1
1. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China
2. Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
3. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1099KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An annual cost of heat exchanges materials was taken as the objective function based on the heat exchanger design theory and the material cost calculation method theory of engineering cost in order to optimize the design of media gas-gas heat exchangers (MGGH). The annual cost of heat exchangers materials, specific cost performance of materials, dimensionless cost of materials and other four dimensionless temperature numbers were defined. The MGGH cost model and dimensionless cost model were established. Two methods to solve the two models were given: the analytical method and iterative method. The iterative method was applied to optimize the design parameters of a typical MGGH in a power plant. The materials selection scheme and the optimized design parameters scheme were given. The cost of the MGGH was theoretically reduced by about 5% after optimization. A group of dimensionless relationship graphs of MGGH under several working conditions was obtained. The error between the value obtained by referring to those graphs and the theoretical calculation value was less than 5%.



Key wordscost model      media gas-gas heat exchanger (MGGH)      design calculation      optimization design      iterative calculation      waste heat utilization     
Received: 03 July 2019      Published: 05 July 2020
CLC:  TK 09  
Corresponding Authors: Zhi-jian SUN     E-mail: andreaskai@hotmail.com;sun_zju@126.com
Cite this article:

Kai HUANG,Zhi-jian SUN,Wen-ying QIAN,Ji-hu YANG,Zi-tao YU,Ya-cai HU. Dimensionless material cost model of media gas-gas heat exchangers. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1362-1368.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.07.015     OR     http://www.zjujournals.com/eng/Y2020/V54/I7/1362


中间介质型烟气换热器无量纲材料成本模型

为了优化中间介质型烟气换热器(MGGH)的设计,以换热材料年成本为目标函数,基于换热器设计理论和工程造价理论中的材料成本计算方法,定义换热材料年成本、比性能价格、无量纲材料成本及其他相关的4个无量纲量温度,建立中间介质型烟气换热器成本模型及无量纲成本模型,给出求解该模型的解析法和迭代法. 通过迭代计算求解某电厂中间介质型烟气换热器的设计参数,给出材料选择方案和优化设计方案,优化前后中间介质型烟气换热器的成本理论上约降低5%. 计算得到几种工况下MGGH无量纲关系图,查阅该表所得值与理论计算值误差小于5%.


关键词: 成本模型,  中间介质型换热器(MGGH),  设计计算,  优化设计,  迭代计算,  余热利用 
Fig.1 Working principle of MGGH
Fig.2 Process for solving optimal dimensionless cost F
参数 设计值
烟气冷却器入口烟气体积流量/(m3·h?1) 1 874 000
烟气冷却器入口烟气温度/℃ 158
烟气冷却器出口烟气温度/℃ 95
烟气冷却器个数 2
烟气再热器入口烟气体积流量/(m3·h?1) 1600 000
烟气再热器入口烟气温度/℃ 30
烟气再热器出口烟气温度/℃ 80
烟气再热器个数 1
热段入口中间媒介温度/℃ 70
热段出口中间媒介温度/℃ 100
双H型鳍片管直径/mm 38
壁厚/mm 5
Tab.1 Main design technical parameters of MGGH
换热管材料 价格/(万元·t?1 使用寿命/a (W·A)heater
Corten-A 0.52 2.5 0.2080
ND 0.65 4 0.1625
316L 3 10 0.3000
Tab.2 Service life and annual cost of heat exchanger pipes in gas heater
换热管材料 使用寿命/a (W·A)cooler
Corten-A 6.36 0.08176
ND 7.07 0.09194
316L 7.06 0.42490
Tab.3 Minimum theorical service life and annual cost of heat exchanger in gas cooler
Fig.3 Dimensional cost relationship diagram for several given working conditions
Fig.4 Dimensionless parameter relationship graphs of MGGH under different specific performance prices
[1]   刘文 330 WM机组MGGH系统改造分析与研究[J]. 锅炉制造, 2016, (4): 37- 39
LIU Wen Analysis and research on the MGGH system of 330 MW unit[J]. Boiler Manufacturing, 2016, (4): 37- 39
[2]   王中伟, 李超, 于丽新 350 MW燃煤机组加装MGGH系统设计方案的制定[J]. 环境保护与循环经济, 2014, 34 (2): 42- 47
WANG Zhong-wei, LI Chao, YU Li-xin MGGH installation programmes in the 350 MW coal-fired units[J]. Environmental Protection and Circular Economy, 2014, 34 (2): 42- 47
doi: 10.3969/j.issn.1674-1021.2014.02.015
[3]   韩联进, 巫江虹, 薛志强 电动客车热泵空调系统仿真与改进[J]. 浙江大学学报: 工学版, 2018, 52 (4): 641- 648
HAN Lian-jin, WU Jiang-hong, XUE Zhi-qiang Simulation and improvement of heat pump air conditioning system for electric bus[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (4): 641- 648
[4]   徐坚, 俞亚南 动态负荷下地源热泵系统的优化设计[J]. 浙江大学学报: 工学版, 2010, 44 (6): 1197- 1200
XU Jian, YU Ya-nan Optimizing design of ground source heat pump systems under dynamic load[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (6): 1197- 1200
[5]   王立新, 黄凯, 孙志坚 板式换热器热工选型优化算法探讨[J]. 能源工程, 2019, (2): 79- 82
WANG Li-xin, HUANG Kai, SUN Zhi-jian Discussion on optimization algorithm for sizing calculation of plate heat exchanger[J]. Energy Engineering, 2019, (2): 79- 82
[6]   ARANI A A A, MORADI R Shell and tube heat exchanger optimization using new baffle and tube configuration[J]. Applied Thermal Engineering, 2019, 157: 113736
doi: 10.1016/j.applthermaleng.2019.113736
[7]   阳君, 刘俊, 刘小华, 等 列管式烟气–烟气换热器烟道系统优化设计[J]. 中国电机工程学报, 2019, 39 (8): 2384- 2393
YANG Jun, XIE Jun, LIU Xiao-hua, et al Optimization design of tubular gas gas heater[J]. Proceedings of the CSEE, 2019, 39 (8): 2384- 2393
[8]   SUN F T, CHEN X, FU L, et al Configuration optimization of an enhanced ejector heat exchanger based on an ejector refrigerator and a plate heat exchanger[J]. Energy, 2018, 164 (DEC 1): 308- 417
[9]   王星, 危尚好, 秦登平, 等 炼钢合金最小成本控制系统的开发及冶金自动应用[J]. 冶金自动化, 2019, 43 (1): 47
WANG Xing, WEI Shang-hao, QIN Deng-ping, at al Development and application of alloy minimum cost control system for steelmaking[J]. Metallurgical Industry Automation, 2019, 43 (1): 47
[10]   张乾坤, 周琴, 李健 管壳式换热器传热温差的优化及影响分析[J]. 山东化工, 2018, 47 (18): 103- 104
ZHANG Qian-kun, ZHOU Qin, LI Jian Optimization of heat transfer temperature difference and influence analysis on the shell-and-tube heat exchanger[J]. Shandong Chemical Industry, 2018, 47 (18): 103- 104
doi: 10.3969/j.issn.1008-021X.2018.18.046
[11]   CAPUTO A C, PELAGAGGE P M, SALINI P Manufacturing cost model for heat exchangers optimization[J]. Applied Thermal Engineering, 2015, 94: 513- 533
[12]   刘鹏, 邬志敏, 王芳, 等 基于换热成本比的R410A风冷式冷凝器优化[J]. 上海理工大学学报, 2007, (4): 358- 362
LIU Peng, WU Zhi-min, WANG Fang, et al Performance optimization for R410A air cooling condenser based on heat capacity price ratio[J]. Journal of University of Shanghai for Science and Technology, 2007, (4): 358- 362
doi: 10.3969/j.issn.1007-6735.2007.04.013
[13]   陈文理 MGGH技术在1000 MW机组中应用的技术、经济性分析[J]. 电力建设, 2014, 35 (5): 103- 107
CHEN Wen-li Technical and economic analysis of MGGH technology application in 1000 MW unit[J]. Electric Power Construction, 2014, 35 (5): 103- 107
doi: 10.3969/j.issn.1000-7229.2014.05.018
[14]   RAHIMI B, CHUA H T. Low grade heat driven multi-effect distillation and desalination [M]. [S. l.]: Elsevier, 2017.
[15]   HASLEGO C, POLLEY G Compact heat exchangers - Part 1: designing plate-and-frame heat exchangers[J]. Chemical Engineering Progress, 2003, 99 (1): 32- 37
[16]   杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006: 466-508.
[17]   林宗虎, 徐通模. 实用锅炉手册[M]. 北京: 化学工业出版社, 2009: 429-529.
[18]   同济大学数学系. 高等数学: 上册[M]. 上海: 同济大学出版社, 2014.
[19]   赵钦新, 张知翔, 杜文智, 等 模拟气氛下硫酸露点的腐蚀试验研究[J]. 动力工程学报, 2012, 32 (5): 420- 424
ZHAO Qin-xin, ZHANG Zhi-xiang, DU Wen-zhi, et al Experimental study on sulfuric acid dew point corrosion in simulated atmospheric conditions[J]. Journal of Chinese Society of Power Engineering, 2012, 32 (5): 420- 424
doi: 10.3969/j.issn.1674-7607.2012.05.015
[20]   何雅玲, 汤松臻, 王飞龙, 等 中低温烟气换热器气侧积灰、磨损及腐蚀的研究[J]. 科学通报, 2016, 61 (17): 1858- 1876
HE Ya-ling, TANG Song-zhen, WANG Fei-long, et al Gas-side fouling, erosion and corrosion of heat exchanger formiddle and low temperature flue gas waste heat recovery[J]. Science Bulletin, 2016, 61 (17): 1858- 1876
[21]   王维, 陆倩 锅炉尾部不同材料的低温耐蚀受热面比较[J]. 中国特种设备安全, 2016, 32 (12): 55- 58
WANG Wei, LU Qian Comparison of low-temperature heating surfaces with different corrosion-resistant material at the tail of boiler[J]. China Special Equipment Safety, 2016, 32 (12): 55- 58
doi: 10.3969/j.issn.1673-257X.2016.12.013
[22]   OKA Y I, OKAMURA K, YOSHIDA T Practical estimation of erosion damage caused by solid particle impact: Part 1: effects of impact parameters on a predictive equation[J]. Wear, 2005, 259: 95- 101
doi: 10.1016/j.wear.2005.01.039
[1] Zhong-yu WANG,Ling WANG,Yan-li WANG,Bing WU. Traffic congestion prevention method during large-scale special events based on variable network topology optimization[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 358-366.
[2] Bo-ping YU,Gao-hua LI,Liang XIE,Fu-xin WANG. Dynamic stall optimization design of rotor airfoil based on surrogate model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 833-842.
[3] Peng ZHANG,Xiao-jian LIU,Shu-you ZHANG,Le-miao QIU,Guo-dong YI. Sparse hybrid uncertain variable optimization method and application[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 435-443.
[4] SONG Wei, JIANG Hong-jian, WANG Tao, GAO Zhen-fei, DU Zhen-tao, ZHU Shi-qiang. Optimization design and experimental research on magnetic components for wall-climbing robot[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1837-1844.
[5] ZHANG Xuan-wu, ZHENG Yao, YANG Bo-wei, ZHANG Ji-fa. Aerodynamic optimization design of airfoil configurations based on cascade feedforward neural network[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1405-1411.
[6] LIU Chang-cheng, LI Wen-hui, ZHANG Wen-ping, XIA Wen, ZHANG Zi-jian, ZHOU Yao-feng. Research on performance of waste heat utilization system of large marine diesel engine[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2259-2264.
[7] HU You rui, LIU Yan, WANG Yang, LIU Jian zhong, ZHOU Jun hu, HU Wei, LI Hong wei. Numerical simulation and orthogonal optimization design for high humidity hydrogen oxygen injector[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2403-2409.
[8] WEI Jun, ZHANG Meng, YANG Man-juan, DONG Rong-zhen. Calculation method for designing concrete structure guardrail[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(2): 249-253.
[9] ZHU Jun-liang, HAO Zhi-yong, ZHENG Kang. Analysis and optimization design on piston secondary motion of gasoline engine[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(2): 334-341.
[10] TONG Shui-guang, WANG Xiang-bing, ZHONG Wei, ZHANG Jian. Dynamic optimization design for rigid landing leg of crane
based on BP-HGA
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(1): 122-130.
[11] XU Jing-hua, ZHANG Shu-you, YI Guo-dong, TU Li, GUANG Yao. Object variation oriented kinematics optimization design
for manipulator
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(2): 209-216.