Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (2): 358-366    DOI: 10.3785/j.issn.1008-973X.2021.02.016
    
Traffic congestion prevention method during large-scale special events based on variable network topology optimization
Zhong-yu WANG1(),Ling WANG2,Yan-li WANG2,Bing WU2,*()
1. College of Transport and Communications, Shanghai Maritime University, Shanghai 201306, China
2. Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 201804, China
Download: HTML     PDF(1077KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A set of methodology and process of variable network topology optimization at the middle and micro view level for large-scale special events congestion prevention was proposed based on the basic model, in order to reduce the risk and the combating costs of road traffic congestion. The variable topology models of roadway sections and intersections were established respectively, with the minimum composite saturation degree as the optimization objective of the roadway section variable topology, and the minimum sum of volume ratios of various phases on the approach as the optimization objective of the intersection variable topology. The concept and the identification principles of the key roadway sections of the variable network topology were proposed, the two-way traffic importance weights of the affected roadway sections were set, and the intersection variable topology was used as the joint and auxiliary strategy for roadway section variable topology combined with the traffic operation and congestion evolution characteristics of the large-scale special events. The optimization model solution methods were also studied. The empirical study of the proposed method was based on the leaving traffic of a large-scale special event held in Capital Indoor Stadium in Beijing. Results show that the implementation of variable topology optimization in the study area can prevent congestion caused by special event attracted traffic, which is conducive to solving the problem of serious imbalances of two-way traffic directions. The improvement percentage of composite saturation degree on all relevant roadway sections was more than 10%, indicating that the proposed method can effectively adjust the short-term structural mismatch of network traffic supply and demand, and optimize the transportation infrastructure stock under existing conditions to avoid the waste of resources caused by infrastructure increases, and it is a fine management oriented method.



Key wordstraffic engineering      large-scale special events      congestion prevention      variable network topology      optimization design     
Received: 13 May 2020      Published: 09 March 2021
CLC:  U 491.13  
Fund:  国家自然科学基金资助项目(71804127,51138003);道路与交通工程教育部重点实验室开放课题资助项目(K202003)
Corresponding Authors: Bing WU     E-mail: wangzy@shmtu.edu.cn;wubing@tongji.edu.cn
Cite this article:

Zhong-yu WANG,Ling WANG,Yan-li WANG,Bing WU. Traffic congestion prevention method during large-scale special events based on variable network topology optimization. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 358-366.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.02.016     OR     http://www.zjujournals.com/eng/Y2021/V55/I2/358


基于网络变结构优化的大型活动交通拥堵预防方法

为了降低道路交通拥堵发生的风险和应对成本,基于网络变结构基础模型,提出适应大型活动拥堵预防的中微观层面的网络变结构优化方法和流程. 分别建立路段和交叉口变结构模型,以复合饱和度最小为路段变结构的优化目标,以进口各相位流量比之和最小为交叉口变结构的优化目标. 结合大型活动交通运行和拥堵演化特征,提出网络变结构关键路段的概念及识别原则,设定受影响路段双向交通重要度权重,将交叉口变结构作为路段变结构的连带、辅助策略,研究优化模型的解法,并以北京首都体育馆一次大型活动散场交通为案例,对提出方法进行实证研究. 结果表明,在研究范围内实施变结构优化可以预防活动诱增交通引发的拥堵,有利于解决严重的交通方向不均衡问题,各相关路段复合饱和度改善比例均超过10%,表明所提方法能有效调节网络交通供需的短时结构性不匹配,在现有条件下优化交通基础设施存量而避免增量造成的资源浪费,是以精细化管控为导向的方法.


关键词: 交通工程,  大型活动,  拥堵预防,  网络变结构,  优化设计 
Fig.1 Variable topology for roadway section
Fig.2 Variable topology for intersection
Fig.3 Variable road network topology optimization implementation process during large-scale special events
Fig.4 Road network surrounding Capital Indoor Stadium in Beijing
Fig.5 v/c diagram of roadway sections with and without traffic attracted by special event in study area
编号 道路名称 路段起点 路段讫点 叠加v /c Δv /c KD
1 紫竹院路 中关村南大街 西三环北路 0.67 0.37 0.69
2 西外大街 中关村南大街 三里河路 0.85 0.52 0.72
3 西外大街 三里河路 动物园路 0.78 0.45 0.70
4 车公庄西路 首都体育馆
南路
西三环北路 0.74 0.37 0.67
5 西三环北路 紫竹院路 万寿寺路 0.94 0.27 0.59
6 中关村
南大街
紫竹院路 民族大学南路 0.89 0.52 0.71
7 中关村
南大街
民族大学南路 魏公村路 0.96 0.52 0.68
8 首都体育馆
南路
紫竹院路 新苑街 0.81 0.44 0.69
9 首都体育馆
南路
新苑街 车公庄西路 0.89 0.45 0.67
Tab.1 Key roadway sections (quasi-key roadway sections included) in study area
编号 道路名称 路段起点 路段讫点 m Xc $ X_c'$ ΔXc /Xc /%
1 紫竹院路 中关村南大街 西三环北路 1 0.55 0.48 12.40
2 西外大街 中关村南大街 三里河路 1 0.71 0.60 15.15
3 西外大街 三里河路 动物园路 1 0.64 0.56 13.36
4 车公庄西路 首都体育馆南路 西三环北路 1 0.62 0.56 10.36
6 中关村南大街 紫竹院路 民族大学南路 1 0.74 0.63 14.28
7 中关村南大街 民族大学南路 魏公村路 1 0.79 0.70 11.40
8 首都体育馆南路 紫竹院路 新苑街 1 0.68 0.59 12.40
9 首都体育馆南路 新苑街 车公庄西路 1 0.74 0.67 10.36
Tab.2 Variable lane programs and performances of key roadway sections (quasi-key roadway sections included) in study area
交叉口名称 实施前渠化方案 实施后渠化方案
中关村南大街—魏公村路
中关村南大街—万寿寺路
首都体育馆南路—车公庄西路
西三环北路—车公庄西路
Tab.3 Variable approach lane programs of typical intersections in study area
[1]   LATOSKI S P, DUNN J R W M, WAGENBLAST B, et al. Managing travel for planned special events [R]. Washington DC: Federal Highway Administration, 2003.
[2]   VILLIERS C, NGUYEN L D, ZALEWSKI J Evaluation of traffic management strategies for special events using probe data[J]. Transportation Research Interdisciplinary Perspectives, 2019, 2: 100052
doi: 10.1016/j.trip.2019.100052
[3]   翁剑成, 付宇, 林鹏飞, 等 基于梯度推进决策树的日维度交通指数预测模型[J]. 交通运输系统工程与信息, 2019, 19 (2): 80- 85
WENG Jian-cheng, FU Yu, LIN Peng-fei, et al GBDT method based on prediction model of daily dimension traffic index[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19 (2): 80- 85
[4]   刘小明, 荣建. 奥运交通规划研究[R]. 北京: 北京工业大学交通研究中心, 2004.
[5]   杨东援 “上海世博会”城市交通方案[J]. 交通运输系统工程与信息, 2006, 6 (1): 19- 21
YANG Dong-yuan Research the urban traffic scheme in Shanghai World Expo[J]. Journal of Transportation Systems Engineering and Information Technology, 2006, 6 (1): 19- 21
doi: 10.3969/j.issn.1009-6744.2006.01.008
[6]   KARLAFTIS M G, KEPAPTSOGLOU K, STATHOPOULOS A, et al Planning public transport networks for the 2004 Summer Olympics with decision support systems[J]. Transportation Research Record: Journal of the Transportation Research Board, 2004, 1887: 71- 82
doi: 10.3141/1887-09
[7]   DING N, HE Q, WU C, et al Modeling traffic control agency decision behavior for multimodal manual signal control under event occurrences[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16 (5): 2467- 2478
doi: 10.1109/TITS.2015.2409174
[8]   WANG Z, YANG H, WU B. Traffic flow characteristics and congestion evolution rules for urban road networks during special events [C]// 17th COTA International Conference of Transportation Professionals. Shanghai: ASCE, 2017.
[9]   王伟娟. 网络变结构控制在交叉口流向禁限管理中的应用[D]. 上海: 同济大学, 2008.
WANG Wei-juan. Road network topology control in no left-turn management [D]. Shanghai: Tongji University, 2008.
[10]   吴兵, 马万经, 杨超, 等. 特殊需求下区域交通协同管控理论与技术[M]. 北京: 电子工业出版社, 2015.
[11]   MEYER M D. A toolbox for alleviating traffic congestion and enhancing mobility [R]. Washington DC: Institute of Transportation Engineers, 1997.
[12]   American Association of State Highway and Transportation Officials. A policy on geometric design of highways and streets [M]. 4th ed. Washington DC: American Association of State Highway and Transportation Officials, 2001.
[13]   蔡建荣, 黄汝晴, 黄中祥 考虑通行能力折减的可变车道优化[J]. 中南大学学报: 自然科学版, 2018, 49 (7): 1838- 1844
CAI Jian-rong, HUANG Ru-qing, HUANG Zhong-xiang Optimization of variable lane considering reduction of capacity[J]. Journal of Central South University: Science and Technology, 2018, 49 (7): 1838- 1844
[14]   马莹莹, 曾令宇, 陈纲梅, 等 可变车道行驶方向的动态控制方法研究[J]. 控制理论与应用, 2016, 33 (11): 1457- 1462
MA Ying-ying, ZENG Ling-yu, CHEN Gang-mei, et al Study on dynamic traffic control for reversible lanes[J]. Control Theory and Applications, 2016, 33 (11): 1457- 1462
[15]   赵靖. 提升道路通行能力时空协同优化控制理论与方法[D]. 上海: 同济大学, 2014.
ZHAO Jing. Urban streets capacity enhancement by coordination optimization of lane reorganization and signal control [D]. Shanghai: Tongji University, 2014.
[16]   GAYAH V, DAGANZO C Analytical capacity comparison of one-way and two-way signalized street networks[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012, 2301: 76- 85
doi: 10.3141/2301-09
[17]   许项东, 程琳 城市道路单行系统布局优化的双层规划模型和混合算法[J]. 系统工程理论与实践, 2009, 29 (10): 180- 187
XU Xiang-dong, CHENG Lin Bilevel programming model and hybrid solution algorithm for the configuration of one-way streets[J]. Systems Engineering: Theory and Practice, 2009, 29 (10): 180- 187
doi: 10.3321/j.issn:1000-6788.2009.10.023
[18]   黄恩厚. 城市道路交通微循环系统改扩建优化理论与方法[D]. 长沙: 中南大学, 2009.
HUANG En-hou. Optimization theory and method for reconstruction of urban road traffic micro-circulation system [D]. Changsha: Central South University, 2009.
[19]   WONG C K, HEYDECKER B G Optimal allocation of turns to lanes at an isolated signal-controlled junction[J]. Transportation Research Part B: Methodological, 2011, 45 (4): 667- 681
doi: 10.1016/j.trb.2010.12.001
[20]   YAO R, ZHANG X, WU N, et al Modeling and control of variable approach lanes on an arterial road: a case study of Dalian[J]. Canadian Journal of Civil Engineering, 2018, 45 (11): 986- 1003
doi: 10.1139/cjce-2017-0432
[21]   蒋应红, 保丽霞 单双向交通组织衔接交叉口段的可变车道利用[J]. 上海交通大学学报, 2011, 45 (10): 1562- 1566
JIANG Ying-hong, BAO Li-xia Study on setting of variable lanes near intersection between one-way and two-way traffic[J]. Journal of Shanghai Jiaotong University, 2011, 45 (10): 1562- 1566
[22]   徐洪峰, 高霜霜, 郑启明, 等 信号控制交叉口的复合动态车道管理方法[J]. 吉林大学学报: 工学版, 2018, 48 (2): 430- 439
XU Hong-feng, GAO Shuang-shuang, ZHENG Qi-ming, et al Hybrid dynamic lane operation at signalized intersection[J]. Journal of Jilin University: Engineering and Technology Edition, 2018, 48 (2): 430- 439
[23]   DEPRATOR A J, HITCHCOCK O, GAYAH V V Improving urban street network efficiency by prohibiting conflicting left turns at signalized intersections[J]. Transportation Research Record: Journal of the Transportation Research Board, 2017, 2622: 58- 69
doi: 10.3141/2622-06
[24]   吴蓉. 城市道路信号控制交叉口左转机动车管理对策研究[D]. 上海: 同济大学, 2008.
WU Rong. Study on the left-turn traffic management of urban road signalized intersections [D]. Shanghai: Tongji University, 2008.
[25]   龙科军, 陈群 道路网络交叉口“禁左”交通组织优化[J]. 北京工业大学学报, 2011, 37 (6): 876- 881
LONG Ke-jun, CHEN Qun Left-turning traffic forbiddance system optimization of intersections on road networks[J]. Journal of Beijing University of Technology, 2011, 37 (6): 876- 881
[26]   吴伟, 刘洋, 马万经, 等 考虑上下游通行能力匹配的干线禁左模型[J]. 交通运输系统工程与信息, 2018, 18 (6): 157- 163, 186
WU Wei, LIU Yang, MA Wan-jing, et al Left turn forbiddance model considering capacity matching between upstream and downstream intersections along arterial road[J]. Transportation Systems Engineering and Information Technology, 2018, 18 (6): 157- 163, 186
[27]   吴兵, 李晔. 交通管理与控制[M]. 第5版. 北京: 人民交通出版社, 2015.
[28]   陆建, 崔洪军, 潘建芳 大型活动交通研究范围确定方法[J]. 武汉理工大学学报: 交通科学与工程版, 2009, 33 (3): 422- 425
LU Jian, CUI Hong-jun, PAN Jian-fang Traffic research area delimitating method of large activities[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2009, 33 (3): 422- 425
[29]   孔令斌, 陈小鸿, 荣建, 等. 建设项目交通影响评价技术手册[M]. 北京: 中国建筑工业出版社, 2011.
[30]   Transportation Research Board. Highway capacity manual 2010 [M]. Washington DC: Transportation Research Board, 2010.
[31]   王玲. 可预知特殊需求下交通网络变结构预案研究[D]. 上海: 同济大学, 2013.
WANG Ling. Variable traffic network structure strategy for planned special events [D]. Shanghai: Tongji University, 2013.
[1] Kai HUANG,Zhi-jian SUN,Wen-ying QIAN,Ji-hu YANG,Zi-tao YU,Ya-cai HU. Dimensionless material cost model of media gas-gas heat exchangers[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1362-1368.
[2] Kai LU,Xin TIAN,Guan-rong LIN,Xing-dong DENG. Simultaneous optimization model of signal phase design and timing at intersection[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 921-930.
[3] Bo-ping YU,Gao-hua LI,Liang XIE,Fu-xin WANG. Dynamic stall optimization design of rotor airfoil based on surrogate model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 833-842.
[4] Jia-qi ZENG,Dian-hai WANG. Improved numerical method for two-way arterial signal coordinate control[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2386-2394.
[5] Peng ZHANG,Xiao-jian LIU,Shu-you ZHANG,Le-miao QIU,Guo-dong YI. Sparse hybrid uncertain variable optimization method and application[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 435-443.
[6] Si-jia ZHANG,Shun-ping JIA,Bao-hua MAO,Cun-rui MA,Tong ZHANG. Influence of passenger trip distance distribution on competitiveness of bus lines in urban rail transit network[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 292-298.
[7] GONG Yue, LUO Xiao-Qin, WANG Dian-hai, YANG Shao-hui. Urban travel time prediction based on gradient boosting regression tress[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 453-460.
[8] SONG Wei, JIANG Hong-jian, WANG Tao, GAO Zhen-fei, DU Zhen-tao, ZHU Shi-qiang. Optimization design and experimental research on magnetic components for wall-climbing robot[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1837-1844.
[9] SHANG Qiang, LIN Ci-yun, YANG Zhao-sheng, BING Qi-chun, XING Ru-ru. Traffic incident detection based on variable selection and kernel extreme learning machine[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1339-1346.
[10] ZHANG Xuan-wu, ZHENG Yao, YANG Bo-wei, ZHANG Ji-fa. Aerodynamic optimization design of airfoil configurations based on cascade feedforward neural network[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1405-1411.
[11] WANG Han qi, CHEN Hong, FENG Wei, LIU Wei wei. Multi-dimensional travel decision model of heterogeneous commuters based on Cumulative Prospect Theory[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 297-303.
[12] YU De-xin, TIAN Xiu-juan, YANG Zhao-sheng, ZHOU Xi-yang, CHENG Ze-yang. Improved arterial coordinated signal control optimization model[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 2019-2029.
[13] ZHOU Dan, MA Xiao long, JIN Sheng, WANG Dian hai. Modeling influencing factors of vehicle passing rate #br# in mixed bicycle traffic flow[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1672-1678.
[14] SUN Wen-cai, YANG Zhi-fa, LI Shi-wu, XU Yi, GUO Meng-zhu, WEI Xue-xin. Driver fixation area division oriented DBSCAN-MMC method[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1455-1461.
[15] LI Shi-wu, XU Yi, WANG Lin-hong, SUN Wen-cai, BIE Yi-ming. Gravitational search algorithm based adaptive low emission signal timing[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1313-1318.