Please wait a minute...
J4  2012, Vol. 46 Issue (3): 482-488    DOI: 10.3785/j.issn.1008-973X.2012.03.015
Ignition model and kinetic parameters analysis of oxygen-enriched
combustion of pulverized coal
ZHOU Zhi-jun, JIANG Xu-dong, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      


The oxygen-enriched combustion of pulverized coal was simulated in Thermal Gravimetric Analysis (TGA) instrument, in order to understand the mechanism of oxygen-enriched combustion of coal, especially how to judge the ignition model. The TGA tests were done with oxygen concentrations of 21%, 40%, 60%, 80% and 100%, with two kinds of atmospheres (N2/O2, CO2/O2), and with different particle sizes of pulverized coal. Also the activation energy and pre-exponential factor of coal were calculated by CoatsRedfern. And in line with TG-DTG curves, a new accurate method to judge the ignition model of pulverized coal in oxygen-enriched combustion was presented. The new method is more exact in judge the ignition model of pulverized coal. Results showed that the homogeneous ignition of pulverized coal was happened when the particle size under than 40 μm, and the heterogeneous ignition of pulverized coal was happened when the particle size more than 200 μm in the atmospheres of CO2/O2. The influence of large particles is more than small particles, when the oxygen volume fraction was changed.

Published: 01 March 2012
  TK 16  
Cite this article:

ZHOU Zhi-jun, JIANG Xu-dong, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa. Ignition model and kinetic parameters analysis of oxygen-enriched
combustion of pulverized coal. J4, 2012, 46(3): 482-488.

URL:     OR


为了能够更深入地了解煤粉在富氧气氛下的燃烧机理,尤其是煤粉富氧着火模式的判断,在热重分析仪上,模拟了不同氧气体积分数下的煤粉富氧燃烧过程.选取5个不同的氧气体积分数:21%、40%、60%、80%和100%,并且模拟了2种气氛下(N2/O2,CO2/O2)和不同颗粒大小的煤粉的富氧燃烧过程.并根据普适积分法,计算了煤粉的活化能和指前因子.提出了一种根据TG-DTG曲线判断煤粉着火模式的新方法,它使得煤粉着火模式的判断更为准确.研究发现,在CO2/O2气氛下的富氧燃烧过程中,当煤粉粒径小于40 μm时,煤粉发生非均相着火;当煤粉粒径大于200 μm时,煤粉发生均相着火.大颗粒比小颗粒受氧气体积分数变化的影响要大.

[1] 盛昌栋, 袁建伟, 徐明厚, 等. 受辐射加热的煤粉颗粒群着火模型[J]. 燃烧科学与技术, 1996, 2(1): 38-45.
SHENG Changdong, YUAN Jianwei, XU Minghou, et al. Ignition model of pulverizedcoal cloud heated by radiation [J]. Journal of Combustion Science and Technology, 1996, 2(1):38-45.
[2] 张晓杰, 孙绍增, 孙锐, 等. 混煤着火模型研究[J]. 燃烧科学与技术, 2001, 7(1): 89-92.
ZHANG Xiaojie, SUN Shaozeng, SUN Rui, et al. Study on model of coal blends ignition [J]. Journal of Combustion Science and Technology, 2001, 7(1): 89-92.
[3] 姚强, 周俊虎, 涂建华, 等. 煤粉群非稳态统一着火模型[J]. 浙江大学学报:工学版, 1996, 30(4): 446-454.
YAO Qiang, ZHOU Junhu, TU Jianhua, et al. An unsteady universal ignition model of the pulverized coal group [J]. Journal of Zhejiang University :Engineering Science, 1996, 30(4):446-454.
[4] 刘迎晖, 郑楚光, 周英彪, 等. 激光点火煤粒着火的模型分析[J]. 工程热物理学报,2000,21(1):129-132.
LIU Yinghui, ZHENG Chuguang, ZHOU Yingbiao, et al. Ignition model of laserheated single coal particles [J]. Journal of Engineering Thermophysics, 2000, 21(1):129-132.
[5] GURURAJAN V S, WALL T F, GUPTA R P, et al. Mechanisms for the ignition of pulverized coal particles [J]. Combustion and Flame, 1990, 81:119-132.
[6] WALL T F, GUPTA R P, GURURAJAN V S, et al. The ignition of coal particles [J]. Fuel, 1991, 70:1011-1016.
[7] ANNA P, YANG W, BLASIAK W. Combustion of solid fuels under the conditions of high temperature and various oxygen concentration[C]∥ Challenges of Power Engineering and Environment.Hangzhou: Zhejiang University Press, 2007: 871-876.
[8] FAN Yuesheng, ZOU Zheng, CAO Zidong, et al. Ignition characteristics of pulverized coal under high oxygen concentrations [J]. Energy & Fuels, 2008, 22:892-897.
[9] 徐迎超, 蒋孝科, 毛天,等. 富氧气氛煤粉气流着火特性的实验研究[J]. 锅炉技术, 2008, 39(1): 42-46.
XU Yingchao, JIANG Xiaoke, MAO Tian, et al. Experiment study of the flow of pulverizedcoal ignition specialty on oxygenenriched[J]. Boiler Technology, 2008, 39(1):42-46.
[10] LI Qingzhao, ZHAO Changsui, CHEN Xiaoping, et al. Comparison of pulverized coal combustion in air and in O2/CO2 mixtures by thermogravimetric analysis [J]. Journal of Analytical and Applied Pyrolysis, 2009, 85:521-528.
[11] RATHNAM R K, ELLIOTT L K, WALL T F, et al. Differences in reactivity of pulverized coal in air (O2/N2) and oxyfuel (O2/CO2) conditions [J]. Fuel Processing Technology, 2009, 90:797-802.

[12] ESSENHIGH R H, MISRA M K, SHAW D W. Ignition of coal particles:A review [J]. Combustion and Flame, 1989, 77:3-30.
[13] 岑可法, 姚强, 骆仲泱,等. 高等燃烧学[M]. 杭州:浙江大学出版社, 2002: 298-302.
[14] 岑可法, 姚强, 骆仲泱,等. 燃烧理论与污染控制[M]. 北京:机械工业出版社, 2004: 89-90.
[15] 李庆钊, 赵长遂, 武卫芳,等. O2/CO2气氛下煤粉燃烧反应动力学的试验研究[J]. 动力工程, 2008,28(3):447-452.
LI Qingzhao, ZHAO Changsui, WU Weifang, et al. Kinetics of pulverized coal combustion under mixed O2/CO2 atmospheres\
[J\].Journal of Power Engineering, 2008,28(3): 447-452.
[16] 刘建忠, 冯展管, 张保生,等. 煤燃烧反应活化能的两种研究方法的比较[J]. 动力工程, 2006, 26(1): 121-124.
LIU Jianzhong, FENG Zhanguan, ZHANG Baosheng, et al. Comparison of two methods for analyzing the activation energy of coal combustion[J]. Journal of Power Engineering, 2006, 26(1): 121-124.

[1] NING Zhi-hua, HE Le-nian, HU Zhi-cheng. A high voltage high stability switching-mode controller chip[J]. J4, 2014, 48(3): 377-383.
[2] LI Lin, CHEN Jia-wang,GU Lin-yi, WANG Feng. Variable displacement distributor with valve control for axial piston pump/motor[J]. J4, 2014, 48(1): 29-34.
[3] CHEN Zhao, YU Feng, CHEN Ting-ting. Log-structured even recycle strategy for flash storage[J]. J4, 2014, 48(1): 92-99.
[4] JIANG Zhan, YAO Xiao-ming, LIN Lan-fen. Feature-based adaptive method of ontology mapping[J]. J4, 2014, 48(1): 76-84.
[5] CHEN Di-shi,ZHANG Yu , LI Ping. Ground effect modeling for small-scale unmanned helicopter[J]. J4, 2014, 48(1): 154-160.
[6] HUO Xin-xin, CHU Jin-kui,HAN Bing-feng, YAO Fei. Research on interface circuits of multiple piezoelectric generators[J]. J4, 2013, 47(11): 2038-2045.
[7] YANG Xin, XU Duan-qing, YANG Bing. A parallel computing method for irregular work[J]. J4, 2013, 47(11): 2057-2064.
[8] WANG Yu-qiang,ZHANG Kuan-di,CHEN Xiao-dong. Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams
[J]. J4, 2013, 47(9): 1593-1598.
[9] CUI He-liang, ZHANG Dan, SHI Bin. Spatial resolution and its calibration method for Brillouin scattering based distributed sensors[J]. J4, 2013, 47(7): 1232-1237.
[10] PENG Yong, XU Xiao-jian. Numerical analysis of effect of aggregate distribution on splitting strength of asphalt mixtures[J]. J4, 2013, 47(7): 1186-1191.
[11] WU Xiao-rong, QIU Le-miao, ZHANG Shu-you, SUN Liang-feng, GUO Chuan-long. Correlated FMEA method of complex system with linguistic vagueness[J]. J4, 2013, 47(5): 782-789.
[12] JIN Bo, CHEN Cheng, LI Wei. Gait correction algorithm of hexapod walking robot
with semi-round rigid feet
[J]. J4, 2013, 47(5): 768-774.
[13] ZHONG Shi-ying, WU Xiao-jun, CAI Wu-jun, LING Dao-sheng. Development of horizontal sliding model test facility
 for footpad’s lunar soft landing
[J]. J4, 2013, 47(3): 465-471.
[14] YUAN Xing, ZHANG You-yun, ZHU Yong-sheng, HONG Jun,QI Wen-chang. Fault degree evaluation for rolling bearing combining
backward inference with forward inference
[J]. J4, 2012, 46(11): 1960-1967.
[15] YANG Fei, ZHU Zhu, GONG Xiao-jin, LIU Ji-lin. Real-time dynamic obstacle detection and tracking using 3D Lidar[J]. J4, 2012, 46(9): 1565-1571.