Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (9): 1704-1713    DOI: 10.3785/j.issn.1008-973X.2022.09.003
    
Surface explosion induced crack extension mechanism of reinforced concrete pipeline
Guo-peng LYU1(),Nan JIANG1,*(),Chuan-bo ZHOU1,Hai-bo LI2,Ying-kang YAO3,Xu ZHANG1
1. Faculty of engineering, China University of Geosciences, Wuhan 430074, China
2. State key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
3. Hubei Key Laboratory of Engineering Blasting, Jianghan University, Wuhan 430056, China
Download: HTML     PDF(3914KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A full-scale surface explosion test with buried pipeline was designed and implemented for the common shallow buried reinforced concrete pipeline with bell and spigot joints in urban areas, in order to study the safety of buried pipelines under the effect of surface explosion. The dynamic response characteristics and the crack expansion mechanism of reinforced concrete pipeline with bell and spigot joints under the action of surface explosion were analyzed based on concrete smeared crack model by combining fully coupled numerical simulation means and separated reinforced concrete modeling method. Results show that under the effect of surface explosion, the pipeline cracking in the form of oblique cracking and circumferential cracking. And the oblique cracks are all generated at the bell and spigot joints of the pipe. When the detonation source is located above the bell and spigot joints of pipeline and the middle of the pipe body, obvious oblique cracks appeared in the bell and spigot joints which closest to the detonation source. Bell and spigot joints of the pipeline is the weakest part to resistant blasting in the pipeline system.



Key wordssurface explosion      reinforced concrete pipeline      field test      numerical simulation      crack extension     
Received: 24 October 2021      Published: 28 September 2022
CLC:  TV 331  
Fund:  国家自然科学基金资助项目(41807265, 41972286);爆破工程湖北省重点实验室开放基金资助项目(HKLBEF202001)
Corresponding Authors: Nan JIANG     E-mail: lgp@cug.edu.cn;jiangnan@cug.edu.cn
Cite this article:

Guo-peng LYU,Nan JIANG,Chuan-bo ZHOU,Hai-bo LI,Ying-kang YAO,Xu ZHANG. Surface explosion induced crack extension mechanism of reinforced concrete pipeline. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1704-1713.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.09.003     OR     https://www.zjujournals.com/eng/Y2022/V56/I9/1704


地表爆炸作用下钢筋混凝土管道裂缝扩展机制

为了研究地表爆炸作用下埋地管道的安全性,针对城区内常见的浅埋承插式钢筋混凝土管道,设计并实施全尺寸埋地管道地面爆炸现场试验. 结合全耦合数值模拟手段及分离式钢筋混凝土建模方法,基于混凝土smeared crack模型,分析地表爆炸作用下承插式钢筋混凝土管道结构体系的动力响应特征及管道裂缝扩展机制. 研究结果表明,地表爆炸作用下,管道内壁开裂以斜向裂缝和环向裂缝为主. 斜向裂缝均出现在管道的承插接口处. 当爆源位于管道承插接口上方和管身中部正上方时,距爆源最近的管道承插接口处均产生明显的斜向裂缝. 承插接口是承插式钢筋混凝土管道体系抗爆的薄弱部位.


关键词: 地表爆炸,  钢筋混凝土管道,  现场试验,  数值模拟,  裂缝扩展 
Fig.1 Schematic diagram of reinforced concrete pipeline with bell and spigot joints and its dimensions
Fig.2 Design of surface explosion and monitoring plan
Fig.3 Numerical model of finite element
类型 ρ/(g·cm?3) E/GPa μ RS σy/MPa ET/GPa CRS PRS
纵筋 7.8 210 0.3 548 2 40 5
箍筋 7.8 210 0.3 350 2 40 5
Tab.1 Parameters of rebar
Fig.4 Reinforcement of reinforced concrete pipeline
Fig.5 Contours of pressure in soil and air at different moments induced by surface explosion
Fig.6 Comparison of numerical simulation and field surface explosion phenomena
监测点 Vf /(cm·s?1) Vn /(cm·s?1) Err/%
V1 4.05
V2 4.60 5.14 11.70
V3 11.00 10.20 7.27
V4 8.68 9.97 14.86
V5 4.70 5.09 8.30
Tab.2 Comparison of peak particle velocity
监测部位 现场监测 数值模拟 Ea/% Eb/%
εa/10?6 εh/10?6 εa/10?6 εh/10?6 w/mm
#2管 上部 174 198 0.007
底部 434 185 495 0 9.4
左侧 68 59 186 0 13.20
#3管 上部 21174 4217 8520 3470 0.290 ?59.80 ?17.7
底部 109 1709 117 1883 0.080 7.33 10.2
左侧 1427 230 1270 217 0.093 ?11.00 ?5.7
Tab.3 Comparison of strain results
Fig.7 Comparison of dynamic strain data of pipeline in numerical simulation and field test
Fig.8 Distribution of the crack on reinforced concrete pipeline in simulation
Fig.9 Local breakage of pipes in field test
Fig.10 Comparison of pipe crack distribution in field test and numerical simulation
Fig.11 Total energy-time curve for each part of pipeline system
Fig.12 Positional relationship between explosion stress wave and pipe bell joints
Fig.13 Distribution of crack in reinforced concrete pipeline
Fig.14 Crack element number-time curve of pipeline
Fig.15 Crack width contour of pipeline in different directions
Fig.16 Distribution of width of axial cracks inside pipeline
Fig.17 Effective stress contour for reinforcement of pipeline
Fig.18 Distribution of pipe cracks and axial crack width contour
[1]   JIANG N, GAO T, ZHOU C, et al Effect of excavation blasting vibration on adjacent buried gas pipeline in a metro tunnel[J]. Tunnelling and underground space technology, 2018, 81: 590- 601
doi: 10.1016/j.tust.2018.08.022
[2]   朱斌, 蒋楠, 周传波, 等 基坑开挖爆破作用邻近压力燃气管道动力响应特性研究[J]. 振动与冲击, 2020, 39 (11): 201- 208
ZHU Bin, JIANG Nan, ZHOU Chuan-bo, et al Effect of excavation blast vibration on adjacent buried gas pipeline in a foundation pit[J]. Journal of Vibration and Shock, 2020, 39 (11): 201- 208
doi: 10.13465/j.cnki.jvs.2020.11.027
[3]   ZHANG Z, ZHOU C, REMENNIKOV A, et al Dynamic response and safety control of civil air defense tunnel under excavation blasting of subway tunnel[J]. Tunnelling and Underground Space Technology, 2021, 112: 103879
doi: 10.1016/j.tust.2021.103879
[4]   崔 溦, 宋慧芳, 张社荣 冲击荷载下大型箱涵输水安全性的数值分析[J]. 振动与冲击, 2012, 31 (22): 188- 192
CUI Wei, SONG Hui-fang, ZHANG She-rong Numerical analysis for safety of water transmission of large-scale box culvert under blasting load[J]. Journal of vibration and shock, 2012, 31 (22): 188- 192
doi: 10.3969/j.issn.1000-3835.2012.22.037
[5]   KONESHWARAN S, THAMBIRATNAM D P, GALLAGE C Blast response of segmented bored tunnel using coupled SPH–FE method[J]. Structures, 2015, 2: 58- 71
doi: 10.1016/j.istruc.2015.02.001
[6]   DE A, MORGANTE A N, ZIMMIE T F. Mitigation of blast effects on underground structure using compressible porous foam barriers [C]// Proceedings of the Fifth Biot Conference on Poromechanics. Vienna: [s. n. ], 2013: 971-980.
[7]   YANG G, WANG G, LU W, et al Numerical modeling of surface explosion effects on shallow-buried box culvert behavior during the water diversion[J]. Thin-Walled Structures, 2018, 133: 153- 168
doi: 10.1016/j.tws.2018.09.039
[8]   WANG W, ZHANG D, LU F, et al Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading[J]. International Journal of Impact Engineering, 2012, 49: 158- 164
doi: 10.1016/j.ijimpeng.2012.03.010
[9]   马保松. 非开挖工程学[M]. 北京: 人民交通出版社, 2008: 135.
[10]   中国工程建设标准化协会. 给水排水工程埋地预制混凝土圆形管管道结构设计规程: CECS 143—2002[S]. 北京: 中国计划出版社, 2003: 14.
[11]   JIANG N, ZHU B, HE X, et al Safety assessment of buried pressurized gas pipelines subject to blasting vibrations induced by metro foundation pit excavation[J]. Tunnelling and Under-ground Space Technology, 2020, 102: 103448
doi: 10.1016/j.tust.2020.103448
[12]   HALLQUIST J O. LS-DYNA Theory manual [M]. [S.l.]: Livermore Software Technology Corporation, 2006: 22-47.
[13]   张智超, 刘汉龙, 陈育民, 等 触地爆炸土体弹坑的多物质ALE法分析[J]. 解放军理工大学学报:自然科学版, 2013, 14 (1): 69- 74
ZHANG Zhi-chao, LIU Han-long, CHEN Yu-min, et al Analysis of contact explosion-induced crater of soil using multi-material ALE method[J]. Journal of PLA University of Science and Technology: Natural Science Edition, 2013, 14 (1): 69- 74
[14]   WANG S, LE H T N, POH L H, et al Effect of high strain rate on compressive behavior of strain-hardening cement composite in comparison to that of ordinary fiber-reinforced concrete[J]. Construction and Building Materials, 2017, 136: 31- 43
doi: 10.1016/j.conbuildmat.2016.12.183
[15]   JAYASINGHE L B, THAMBIRATNAM D P, PERERA N, et al Blast response of reinforced concrete pile using fully coupled computer simulation techniques[J]. Computers and Structures, 2014, 135: 40- 49
doi: 10.1016/j.compstruc.2014.01.017
[1] Jun SHI,Ying-ning QIU,Yi ZHOU. Direct numerical simulation of temporally evolving fractal-generated turbulence[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1606-1621.
[2] Gen LI,Tong-chun HAN,Jun-yang WU,Yu ZHANG. Coupled analysis on surface runoff and soil water movement by finite volume method[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 947-955.
[3] Meng-fan LIU,Gang-feng WU,Ke-feng ZHANG,Ping DONG. 2D non-cohesive earthen embankment breach model based on linear erosion formula[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 569-578.
[4] Shuai-ling GAO,Jun-qiang XIA,Bo-liang DONG,Mei-rong ZHOU,Jing-ming HOU. Mathematical model for urban flooding with effect of drainage of street inlets[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 590-597.
[5] Jun ZHANG,Yu-min CUI,Hong-zhou HE. Numerical calculation model on discrete droplet deformation in liquid-liquid system under electric field[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1391-1398.
[6] Jia-hao REN,Hai-ou WANG,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Lower-dimensional approximation models of tangential strain rate of turbulent flames[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1128-1134.
[7] Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.
[8] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[9] Chao-feng ZENG,Shuo WANG,Zhi-cheng YUAN,Xiu-li XUE. Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 338-347.
[10] Zhong-nan LI,Hai-bo ZHU,Yang ZHAO,Xue LUO,Rong-qiao XU. Thermal stress analysis and crack control of assembled bridge pier[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 46-54.
[11] Wei-guo ZHAO,Jia-jia LU,Fu-rong ZHAO. Cavitation control of centrifugal pump based on gap jet principle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1785-1794.
[12] Song-song YANG,Mei WANG,Jian-an DU,Yong GUO,Yan GEN. Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1706-1714.
[13] Si XIAO,Kui-hua WANG,Meng-bo WANG. Vertical dynamic response of pile-soil plug based on surrounding fictitious soil pile model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1593-1603.
[14] Ya-bo YU,Ya-dong DENG. Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 381-388.
[15] Zhong YUN,Meng WEN,Zi-rong LUO,Long CHEN. Design and plunge-diving analysis of underwater-aerial transmedia vehicle of bionic kingfisher[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 407-415.