Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (8): 1606-1621    DOI: 10.3785/j.issn.1008-973X.2022.08.015
    
Direct numerical simulation of temporally evolving fractal-generated turbulence
Jun SHI(),Ying-ning QIU,Yi ZHOU*()
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Download: HTML     PDF(10991KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The direct numerical simulation of temporal evolution of fractal flow field was performed in a high resolution spatial grid to study the characteristics of small scale motions in fractal-generated turbulence. An additional numerical simulation of regular-generated turbulence with the same blockage ratio was also performed for comparison. Random disturbances with appropriate energy distribution were imposed for a quick transition of the two types of flow fields from the laminar initial state to the turbulent state. Numerical results indicated that the fractal-generated turbulence can be significantly affected by the initial velocity conditions for a long time. And in the early stage of the temporally evolution, the kinetic energy generated by the fractal-generated turbulence was smaller, but the large-scale motions of the fractal-generated turbulence in the decay period played an important role in turbulence evolution, resulting in a larger kinetic energy level and a higher turbulence intensity compared with regular-generated turbulence. This observation contributes to the possible passive control of the fractal-generated turbulence. Both fractal-generated and regular-generated turbulence reached the same level of energy and dissipation at the wave number $ kM \approx 20 $, but it was different from the balance of energy transmission and dissipation in energy cascade process. Furthermore, when the regular-generated turbulence became statistically homogenous, the energy decay law was more or less consistent with the Saffman turbulence.



Key wordstemporal evolution      fractal-generated turbulence      direct numerical simulation      energy cascade      turbulence control     
Received: 08 August 2021      Published: 30 August 2022
CLC:  O 357.5+1  
Fund:  国家重点研发计划政府间国际科技新合作重点专项(2019YFE0104800)
Corresponding Authors: Yi ZHOU     E-mail: jun@njust.edu.cn;yizhou@njust.edu.cn
Cite this article:

Jun SHI,Ying-ning QIU,Yi ZHOU. Direct numerical simulation of temporally evolving fractal-generated turbulence. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1606-1621.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.08.015     OR     https://www.zjujournals.com/eng/Y2022/V56/I8/1606


时间演化分形流场的直接数值模拟

为了研究分形网格湍流中小尺度结构的运动规律,在具有高分辨率的空间网格中,开展分形流场时间演化的直接数值模拟,并通过模拟具有相同阻塞率的规则流场进行对比研究. 通过给流场中注入合适的能量扰动,促使2类流场从层流初始状态向湍流状态过渡. 数值模拟结果表明,与规则流场相比,分形流场受到初始条件影响的持续时间更久,同时在时间演化的初期,分形流场产生的动能更小,但分形流场在衰减期的大尺度运动起到强化湍流的作用,导致其产生的动能更大、湍流强度更高,有利于实现对流场的被动控制. 分形流场和规则流场均在截断波数 $ kM \approx 20 $时满足能量与耗散水平相等,但有别于能量级串过程中能量传输与耗散的平衡. 当流场达到统计均匀后,规则流场衰减符合Saffman湍流特征的规律.


关键词: 时间演化,  分形网格湍流,  直接数值模拟,  能量级串,  湍流控制 
Fig.1 Grid Y-Z plane diagram
工况类型 $ {N_{\text{f}}} $ $ \sigma $ $ R{e_{\text{M}}} $ $ {D_{\text{r}}} $ $ {T_{{\text{end}}}} $
分形网格 3 0.36 1600 9.5 500 $ M/{U_0} $
规则网格 1 0.36 1600 1.0 500 $ M/{U_0} $
Tab.1 Calculation model types and condition settings
网格类型 $ {M_0} $ $ {M_1} $ $ {M_2} $ $ {d_0}/{M_0} $ $ {d_1}/{M_1} $ $ {d_2}/{M_2} $ ${L_{X} }/{M_0}$ ${L_{Y} }/{M_0}$ ${L_{Z} }/{M_0}$ ${N_{X} } \times {N_{Y } } \times {N_{Z } }$
分形网格 4M 2M $ M $ 0.19 0.12 0.08 2 2 2 $ 800 \times 400 \times 400 $
规则网格 ? ? $ M $ ? ? 0.2 2 2 2 $ 800 \times 400 \times 400 $
Tab.2 Specific parameters of two types of grid
Fig.2 Turbulence generated by a grid towed with velocity U0
Fig.3 Error comparison between numerical results and analytical solutions of TGV
Fig.4 Temporal evolution of spatial resolution on centerline
Fig.5 Temporal evolution of streamwise instantaneous velocity of FGT
Fig.6 Temporal evolution of streamwise instantaneous velocity of RGT
Fig.7 Temporal evolution of streamwise mean velocity of FGT
Fig.8 Temporal evolution of streamwise mean velocity of RGT
Fig.9 Instantaneous vorticity and second invariant of velocity gradient tensor of FGT
Fig.10 Instantaneous vorticity and second invariant of velocity gradient tensor of RGT
Fig.11 Temporal evolution of statistics of RGT
Fig.12 Temporal evolution of streamwise mean velocity on centerline
Fig.13 Different (Y, Z) locations on 1/4 grid plane Y-Z
Fig.14 Temporal evolution of statistical characteristics at different (Y, Z) locations between FGT and RGT
Fig.15 Temporal evolution of streamwise root mean square of velocity and Taylor Reynolds number on centerline
Fig.16 Temporal evolution of skewness and flatness of streamwise fluctuating velocity partial derivatives on centerline
Fig.17 Temporal evolution of kinetic energy, dissipation rate, Taylor scale and Kolmogorov scale on centerline
Fig.18 3D energy spectrum of FGT and RGT at different timesteps
Fig.19 Temporal evolution of kinetic energy and dissipation rate on different wavenumbers
Fig.20 Effects of initial conditions on FGT
Fig.21 Effect of initial conditions on RGT
Fig.22 Temporal evolution of Saffman integral
Fig.23 3D energy spectrum and Saffman turbulence spectrum of FGT and RGT
[1]   路甬祥 仿生学的科学意义与前沿: 仿生学的意义与发展[J]. 科学中国人, 2004, (4): 22- 24
LU Yong-xiang The scientific significance and frontier of bionics: the significance and development of bionics[J]. Scientific Chinese, 2004, (4): 22- 24
[2]   MANDELBROT B B. The fractal geometry of nature[M]. New York: WH freeman, 1982.
[3]   FERKO K, LACHENDRO D, CHIAPPAZZI N, et al. Interaction of side-by-side fluidic harvesters in fractal grid-generated turbulence [C]// Active and Passive Smart Structures and Integrated Systems XII. Denver: International Society for Optics and Photonics, 2018: 105951E.
[4]   STEIROS K, BRUCE P J K, BUXTON O R H, et al Power consumption and form drag of regular and fractal-shaped turbines in a stirred tank[J]. AIChE Journal, 2017, 63 (2): 843- 854
doi: 10.1002/aic.15414
[5]   SPONFELDNER T, SOULOPOULOS N, BEYRAU F, et al The structure of turbulent flames in fractal and regular-grid generated turbulence[J]. Combustion and Flame, 2015, 162 (9): 3379- 3393
doi: 10.1016/j.combustflame.2015.06.004
[6]   COMTE-BELLOT G, CORRSIN S The use of a contraction to improve the isotropy of grid-generated turbulence[J]. Journal of Fluid Mechanics, 1966, 25 (4): 657- 682
doi: 10.1017/S0022112066000338
[7]   ANTONIA R A, ZHOU T, ZHU Y Three-component vorticity measurements in a turbulent grid flow[J]. Journal of Fluid Mechanics, 1998, 374: 29- 57
doi: 10.1017/S0022112098002547
[8]   SEOUD R E, VASSILICOS J C Dissipation and decay of fractal-generated turbulence[J]. Physics of Fluids, 2007, 19 (10): 105108
doi: 10.1063/1.2795211
[9]   MAZELLIER N, VASSILICOS J C Turbulence without Richardson-Kolmogorov cascade[J]. Physics of Fluids, 2010, 22 (7): 075101
doi: 10.1063/1.3453708
[10]   LAVOIE P, BURATTINI P, DJENIDI L, et al Effect of initial conditions on decaying grid turbulence at low Rλ [J]. Experiments in Fluids, 2005, 39 (5): 865- 874
doi: 10.1007/s00348-005-0022-8
[11]   LAVOIE P, DJENIDI L, ANTONIA R A Effects of initial conditions in decaying turbulence generated by passive grids[J]. Journal of Fluid Mechanics, 2007, 585: 395- 420
doi: 10.1017/S0022112007006763
[12]   严磊, 朱乐东 格栅湍流场风参数沿风洞轴向变化规律[J]. 实验流体力学, 2015, 29 (1): 49- 54
YAN Lei, ZHU Le-le Wind characteristics of grid-generated wind field along the wind tunnel.[J]. Journal of Experiments in Fluid Mechanics, 2015, 29 (1): 49- 54
doi: 10.11729/syltlx20140075
[13]   周蓉 被动格栅紊流场横向风速相关性实验研究[J]. 低温建筑技术, 2013, 35 (12): 51- 53
ZHOU Rong Experimental research on coherence of lateral wind velocity in passive grid-generated wind field[J]. Low Temperature Architecture Technology, 2013, 35 (12): 51- 53
doi: 10.3969/j.issn.1001-6864.2013.12.021
[14]   MAZZI B, VASSILICOS J C Fractal-generated turbulence[J]. Journal of Fluid Mechanics, 2004, 502: 65- 87
doi: 10.1017/S0022112003007249
[15]   LAIZET S, VASSILICOS J C Fractal space-scale unfolding mechanism for energy-efficient turbulent mixing[J]. Physical Review E, 2012, 86 (4): 046302
doi: 10.1103/PhysRevE.86.046302
[16]   LAIZET S, VASSILICOS J C Stirring and scalar transfer by grid-generated turbulence in the presence of a mean scalar gradient[J]. Journal of Fluid Mechanics, 2015, 764: 52- 75
doi: 10.1017/jfm.2014.695
[17]   LAIZET S, VASSILICOS J C DNS of fractal-generated turbulence[J]. Flow, Turbulence and Combustion, 2011, 87 (4): 673- 705
doi: 10.1007/s10494-011-9351-2
[18]   LAIZET S, VASSILICOS J C. Direct numerical simulations of turbulent flows generated by regular and fractal grids using an immersed boundary method [C]// 6th International Symposium on Turbulence and Shear Flow Phenomena. Seoul : Begel House Inc, 2009.
[19]   NAGATA K, SUZUKI H, SAKAI Y, et al Direct numerical simulation of turbulent mixing in grid-generated turbulence[J]. Physica Scripta, 2008, (T132): 014054
[20]   SUZUKI H, NAGATA K, SAKAI Y, et al. DNS on a spatially developing grid turbulence [C]// Journal of Physics: Conference Series. [s. l. ]: IOP Publishing, 2011, 318(3): 032043.
[21]   DA SILVA C B, PEREIRA J C F Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets[J]. Physics of Fluids, 2008, 20 (5): 055101
doi: 10.1063/1.2912513
[22]   VAN REEUWIJK M, HOLZNER M The turbulence boundary of a temporal jet[J]. Journal of Fluid Mechanics, 2014, 739: 254- 275
doi: 10.1017/jfm.2013.613
[23]   DIAMESSIS P J, SPEDDING G R, DOMARADZKI J A Similarity scaling and vorticity structure in high Reynolds number stably stratified turbulent wakes[J]. Journal of Fluid Mechanics, 2011, 671: 52- 95
doi: 10.1017/S0022112010005549
[24]   GAMPERT M, BOSCHUNG J, HENNIG F, et al The vorticity versus the scalar criterion for the detection of the turbulent/non-turbulent interface[J]. Journal of Fluid Mechanics, 2014, 750: 578- 596
doi: 10.1017/jfm.2014.280
[25]   SMYTH W D, MOUM J N Length scales of turbulence in stably stratified mixing layers[J]. Physics of Fluids, 2000, 12 (6): 1327- 1342
doi: 10.1063/1.870385
[26]   WATANABE T, ZHANG X, NAGATA K Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers[J]. Physics of Fluids, 2018, 30 (3): 035102
doi: 10.1063/1.5022423
[27]   WATANABE T, NAGATA K Integral invariants and decay of temporally developing grid turbulence[J]. Physics of Fluids, 2018, 30 (10): 105111
doi: 10.1063/1.5045589
[28]   HUSSAINI M Y, ZANG T A Spectral methods in fluid dynamics[J]. Annual Review of Fluid Mechanics, 1987, 19 (1): 339- 367
doi: 10.1146/annurev.fl.19.010187.002011
[29]   NAGATA K, SUZUKI H, SAKAI Y, et al. Direct numerical simulation of turbulence with scalar transfer around complex geometries using the immersed boundary method and fully conservative higher-order finite-difference schemes [M]// Numerical Simulations Examples and Applications in Computational Fluid Dynamics. [s. l. ] : IntechOpen, 2010, Chap. 3.
[30]   LAIZET S, VASSILICOS J C Multiscale generation of turbulence[J]. Journal of Multiscale Modelling, 2009, 1 (1): 177- 196
doi: 10.1142/S1756973709000098
[31]   KEMPF A, KLEIN M, JANICKA J Efficient generation of initial-and inflow-conditions for transient turbulent flows in arbitrary geometries[J]. Flow, Turbulence and Combustion, 2005, 74 (1): 67- 84
doi: 10.1007/s10494-005-3140-8
[32]   KITAMURA T, NAGATA K, SAKAI Y, et al On invariants in grid turbulence at moderate Reynolds numbers[J]. Journal of Fluid Mechanics, 2014, 738: 378- 406
doi: 10.1017/jfm.2013.595
[33]   LAIZET S, LAMBALLAIS E High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy[J]. Journal of Computational Physics, 2009, 228 (16): 5989- 6015
doi: 10.1016/j.jcp.2009.05.010
[34]   SENGUPTA T K, SHARMA N, SENGUPTA A Non-linear instability analysis of the two-dimensional Navier-Stokes equation: the Taylor-Green vortex problem[J]. Physics of Fluids, 2018, 30 (5): 054105
doi: 10.1063/1.5024765
[35]   LAIZET S, NEDIĆ J, VASSILICOS J C Influence of the spatial resolution on fine-scale features in DNS of turbulence generated by a single square grid[J]. International Journal of Computational Fluid Dynamics, 2015, 29 (3−5): 286- 302
doi: 10.1080/10618562.2015.1058371
[36]   MOIN P, MAHESH K Direct numerical simulation: a tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30 (1): 539- 578
doi: 10.1146/annurev.fluid.30.1.539
[37]   ZHOU Y, NAGATA K, SAKAI Y, et al Enstrophy production and dissipation in developing grid-generated turbulence[J]. Physics of Fluids, 2016, 28 (2): 025113
doi: 10.1063/1.4941855
[38]   LAIZET S, VASSILICOS J C. Direct numerical simulation of fractal-generated turbulence [M]// Direct and large Eddy simulation VII. [s. l. ] : Springer, Dordrecht, 2010: 17-23.
[39]   MELINA G, BRUCE P J K, VASSILICOS J C Vortex shedding effects in grid-generated turbulence[J]. Physical Review Fluids, 2016, 1 (4): 044402
doi: 10.1103/PhysRevFluids.1.044402
[40]   NAGATA K, SAIKI T, SAKAI Y, et al Effects of grid geometry on non-equilibrium dissipation in grid turbulence[J]. Physics of Fluids, 2017, 29 (1): 015102
doi: 10.1063/1.4973416
[41]   DICKEY T D, MELLOR G L Decaying turbulence in neutral and stratified fluids[J]. Journal of Fluid Mechanics, 1980, 99 (1): 13- 31
doi: 10.1017/S002211208000047X
[42]   LIU H T Energetics of grid turbulence in a stably stratified fluid[J]. Journal of Fluid Mechanics, 1995, 296: 127- 157
doi: 10.1017/S0022112095002084
[43]   ZHOU Y, NAGATA K, SAKAI Y, et al Relevance of turbulence behind the single square grid to turbulence generated by regular-and multiscale-grids[J]. Physics of Fluids, 2014, 26 (7): 075105
doi: 10.1063/1.4890746
[44]   ZHOU Y, NAGATA K, SAKAI Y, et al Development of turbulence behind the single square grid[J]. Physics of Fluids, 2014, 26 (4): 045102
doi: 10.1063/1.4870167
[45]   HURST D, VASSILICOS J C Scalings and decay of fractal-generated turbulence[J]. Physics of Fluids, 2007, 19 (3): 035103
doi: 10.1063/1.2676448
[46]   ANTONIA R A, ORLANDI P Similarity of decaying isotropic turbulence with a passive scalar[J]. Journal of Fluid Mechanics, 2004, 505: 123- 151
doi: 10.1017/S0022112004008456
[47]   BURATTINI P, LAVOIE P, ANTONIA R A Velocity derivative skewness in isotropic turbulence and its measurement with hot wires[J]. Experiments in Fluids, 2008, 45 (3): 523- 535
doi: 10.1007/s00348-008-0495-3
[48]   ZHOU Y, NAGATA K, SAKAI Y, et al Energy transfer in turbulent flows behind two side-by-side square cylinders[J]. Journal of Fluid Mechanics, 2020, 903 (A4): 1- 31
[49]   TAYLOR G I Statistical theory of turbulence-II[J]. Proceedings of the ROYAL SOCIETY of London. Series A, Mathematical and Physical Sciences, 1935, 151 (873): 444- 454
[50]   GOTO S, VASSILICOS J C Local equilibrium hypothesis and Taylor’s dissipation law[J]. Fluid Dynamics Research, 2016, 48 (2): 021402
doi: 10.1088/0169-5983/48/2/021402
[51]   ALEXANDROVA O, CARBONE V, VELTRI P, et al Small-scale energy cascade of the solar wind turbulence[J]. The Astrophysical Journal, 2008, 674 (2): 1153
doi: 10.1086/524056
[52]   SAFFMAN P G The large-scale structure of homogeneous turbulence[J]. Journal of Fluid Mechanics, 1967, 27 (3): 581- 593
doi: 10.1017/S0022112067000552
[53]   BATCHELOR G K, PROUDMAN I The large-scale structure of homogenous turbulence[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1956, 248 (949): 369- 405
doi: 10.1098/rsta.1956.0002
[54]   KROGSTAD P Å, DAVIDSON P A Is grid turbulence Saffman turbulence?[J]. Journal of Fluid Mechanics, 2010, 642: 373- 394
doi: 10.1017/S0022112009991807
[55]   北村拓也, 長田孝二, 酒井康彦, 等 格子乱流のエネルギー減衰域における不変量について[J]. 日本機械学会論文集 B 編, 2012, 78 (795): 1928- 1941
KITAMURA T, NAGATA K, SAKAI Y, et al On invariants in energy decay region in grid turbulence[J]. Transactions of the Japan Society of Mechanical Engineers. B, 2012, 78 (795): 1928- 1941
doi: 10.1299/kikaib.78.1928
[1] Jia-hao REN,Hai-ou WANG,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Lower-dimensional approximation models of tangential strain rate of turbulent flames[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1128-1134.
[2] CHEN Kai, YU Zhao-sheng, SHAO Xue-ming. Direct simulation of natural convection
in square cavity filled with porous media
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(3): 549-554.