Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (12): 2476-2488    DOI: 10.3785/j.issn.1008-973X.2023.12.015
    
Foundation settlement-induced bending analysis of composite structures in water-conveying shield tunnels
Zhe-jian ZHOU1(),Yi-xiong FAN2,Ran FANG2,Xue-cheng BIAN1,*()
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Central and Southern China Municipal Engineering Design and Research Institute Limited Company, Wuhan 430010, China
Download: HTML     PDF(2049KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Combining the elastic-plastic deformation characteristics of concrete, bolts, and steel tube, a model for bending analysis of tunnel lining segments, water-conveying steel tube, and concrete filled in between tunnel lining segments and water-conveying steel tube was established based on the longitudinal equivalent continuous model and the plane cross-section assumption. The key parameters for the shield tunnel under the influence of ground settlement were obtained by solving the model. These parameters include the longitudinal joint opening of shield tunnels, the maximum concrete compressive strain, and the maximum steel tube tensile strain. The established model was applied to a water-conveying shield tunnel project in Hangzhou. The results indicate that ground settlement causes the tunnel to bend, leading to seven critical states in the tunnel structure. The sequence of these critical states is as follows: bolts reach yield stress, 2 mm opening of circumferential joints (bolts and segment concrete are eroded), steel tube reaches yield stress, 6 mm opening of circumferential joints (filled concrete-steel tube is eroded), segment concrete begins to experience compressive yield, filled concrete begins to experience compressive yield, and bolts reach failure stress. When the steel tube is in close contact with the lining wall, the tunnel structure is in the most unfavorable condition, which can lead to steel tube corrosion and tunnel brittle failure.



Key wordswater-conveying shield tunnel      composite structure      bending analysis model      bending property      design optimization     
Received: 08 February 2023      Published: 27 December 2023
CLC:  TU 43  
Fund:  国家杰出青年基金资助项目(52125803);中央高校基本科研业务费专项资金资助项目(226-2022-00196)
Corresponding Authors: Xue-cheng BIAN     E-mail: 976008595@qq.com;bianxc@zju.edu.cn
Cite this article:

Zhe-jian ZHOU,Yi-xiong FAN,Ran FANG,Xue-cheng BIAN. Foundation settlement-induced bending analysis of composite structures in water-conveying shield tunnels. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2476-2488.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.12.015     OR     https://www.zjujournals.com/eng/Y2023/V57/I12/2476


地基沉降引发输水盾构隧道复合结构受弯分析

结合混凝土、螺栓和钢管的弹塑性变形特性,基于纵向等效连续模型和平截面假定,建立衬砌管片、输水钢管及在衬砌管片与输水钢管之间填充混凝土的受弯分析模型. 求解该模型,得到地基沉降作用下盾构隧道纵向接缝张开量、最大混凝土压应变及最大钢管拉应变等关键参数. 将所建模型应用于杭州某输水盾构隧道工程,结果表明:地基沉降引起隧道受弯,隧道结构将产生7类临界状态,且先后顺序为螺栓达到屈服应力、环缝张开2 mm (螺栓和管片混凝土被侵蚀)、钢管达到屈服应力、环缝张开6 mm(钢管和填充混凝土被侵蚀)、管片混凝土开始受压屈服、填充混凝土开始受压屈服、螺栓达到破坏应力. 当钢管紧贴衬砌管壁时,隧道结构处于最不利工况,容易导致钢管腐蚀和隧道脆性破坏.


关键词: 输水盾构隧道,  复合结构,  受弯分析模型,  受弯性能,  设计优化 
Fig.1 Cross-section diagram of composite structure in water-conveying shield tunnel
Fig.2 Bending deformation diagram of composite structure
Fig.3 Stress-strain curves of concrete, bolt and steel tube
Fig.4 Stress and deformation of shield tunnel lining segments
Fig.5 Stress and deformation of filled concrete-steel tube when neutral axis is within outer diameter of steel tube
Fig.6 Stress and deformation of filled concrete-steel tube when neutral axis is beyond outer diameter of steel tube
Fig.7 Analytical model calculation process
结构 参数 数值
管片 隧道外径 D/m 6.2
衬砌厚度 t/mm 350
环宽 ls/m 1.0
混凝土弹性模量 Ec/kPa 3.45×107
混凝土屈服应变 0.002
螺栓 数量 nb 17
直径 db/mm 30
长度 lb/mm 400
弹性模量 Eb/kPa 2.06×108
屈服应力 fy/kPa 6.40×105
极限应力 fu/kPa 8.00×105
预应力 N1/kPa 7.00×104
Tab.1 Main parameters of longitudinal joints for Shanghai metro line one [18]
本研究模型 文献[19]模型 $\varDelta$/%
ρ/m δj/mm M/(103 kN·m) ρ/m δj/mm M/(103 kN·m)
15 000 0.32 8.78 15 000 0.32 8.38 0
8 780 0.55 14.99 8 694 0.55 14.00 0.99
2 703 2.00 19.19 2 951 2.00 19.39 8.40
943 6.00 19.78 971 6.00 21.21 2.88
578 9.90 19.88
369 15.60 19.93 369 15.60 24.00 0
Tab.2 Comparison and verification of deformation force of pipe ring lining
结构 参数 数值
管片 隧道外径D/m 6.2
衬砌厚度t/mm 350
环宽ls/m 1.0
混凝土弹性模量Ec/kPa 3.45×107
混凝土屈服应变 0.002
螺栓 数量nb 17
直径db/mm 30
长度lb/mm 400
弹性模量Eb/kPa 2.06×108
屈服应力fy/kPa 6.40×105
极限应力fu/kPa 8.00×105
预应力N1/kPa 7.00×104
填充混凝土 弹性模量Ec/kPa 2.80×107
屈服应变 0.002
钢管 外径D1/m 3.6
厚度t1/mm 22
弹性模量Ept/kPa 2.09×108
屈服应力fypt/kPa 3.25×105
Tab.3 Main parameters of longitudinal joints for water-conveying tunnels
Fig.8 Opening of circumferential joints and maximum segment concrete compressive strain
Fig.9 Relationship of bending moment and curvature of pipe ring lining
Fig.10 Maximum steel tube tensile strain and maximum filled concrete compressive strain
Fig.11 Relationship of bending moment and curvature of filled concrete-steel tube
临界状态 正弯矩受力状态 负弯矩受力状态
ρ/m δj/mm M/(103 kN·m) ρ/m δj/mm M/(103 kN·m)
3) 10 558 0.54 40.05 10 558 0.54 32.84
1) 3 206 2.00 103.49 3 206 2.00 79.75
5) 2 132 3.12 146.79 1 856 3.55 124.92
2) 1 122 6.00 188.24 1 122 6.00 153.99
6) 757 9.00 203.02 757 9.00 166.51
7) 510 465
4) 278 15.20 278 15.20
Tab.4 Boundary index value corresponding to critical state of composite structure under dfferent states of bending moment stress
Fig.12 Influence curve of eccentric position of steel tube
Fig.13 Influence curve of outer diameter of steel tube
Fig.14 Influence curve of steel tube thickness
Fig.15 Influence curve of elastic modulus of filled concrete
Fig.16 Influence curve of elastic modulus of steel tube
[1]   SHEN S L, WU H N, CUI Y J, et al Long−term settlement behaviour of metro tunnels in the soft deposits of shanghai[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2014, 40 (2): 309- 323
[2]   DI H, ZHOU S, GUO P, et al Observed long−term differential settlement of metro structures built on soft deposits in the Yangtze River Delta region of China[J]. Canadian Geotechnical Journal, 2020, 57 (6): 840- 850
doi: 10.1139/cgj-2018-0524
[3]   小泉淳, 村上博智, 西野健三. ツールドトネルの轴方向特性のモデルイヒにつぃて [C]// 土木学会论文集. 东京: 土木学会, 1988: 79−88.
KOIZUMI A, MURAKAMI H, NISHINO K. Study on the analytical model of shield tunnel in longitudinal direction [C]// Journal of the Japan Society of Civil Engineers. Tokyo: Japan Society of Civil Engineers, 1988: 79−88.
[4]   志波由纪夫, 川島一彦, 大日方尚己, 等. ツールドトンネルの耐震解析に用いる長手方向覆工剛性の評価法 [C]// 土木学会论文集. 东京: 土木学会, 1988: 319−327.
SHIBA Y, KAWASHIMA K, OBINATA N, et al. An evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analyses [C]// Journal of the Japan Society of Civil Engineers. Tokyo: Japan Society of Civil Engineers, 1988: 319−327.
[5]   徐 凌. 软土盾构隧道纵向沉降研究[D]. 上海: 同济大学, 2005.
XU Ling. Study on longitudinal settlement of soft soil shield tunnel [D]. Shanghai: Tongji University, 2005.
[6]   李翔宇, 刘国彬, 杨 潇, 等 基于修正纵向等效连续化模型的隧道变形受力研究[J]. 岩土工程学报, 2014, 36 (4): 662- 670
LI Xiang-yu, LIU Guo-bin, YANG Xiao, et al Deformation and stress of tunnel structures based on modified longitudinal equivalent continuous model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (4): 662- 670
[7]   LI X, ZHUO X, HOMG B, et al Experimental and analytical study on longitudinal bending behavior of shield tunnel subjected to longitudinal axial forces[J]. Tunnelling and Underground Space Technology, 2019, 86: 128- 137
doi: 10.1016/j.tust.2019.01.011
[8]   CHENG H Z, CHEN R P, WU H N General solutions for the longitudinal deformation of shield tunnels with multiple discontinuities in strata[J]. Tunnelling and Underground Space Technology, 2021, 107: 103652
doi: 10.1016/j.tust.2020.103652
[9]   WANG Z, SHI C, GONG C, et al An enhanced analytical model for predicting the nonlinear longitudinal equivalent bending stiffness of shield tunnels incorporating combined N−M actions[J]. Tunnelling and Underground Space Technology, 2022, 126: 104567
doi: 10.1016/j.tust.2022.104567
[10]   梁荣柱, 王凯超, 黄亮, 等 类矩形盾构隧道纵向等效抗弯刚度解析解[J]. 岩土工程学报, 2022, 44 (2): 212- 223
LIANG Rong-zhu, WANG Kai-chao, HUANG Liang, et al Analytical solution of longitudinal equivalent flexural stiffness of quasi rectangular shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2022, 44 (2): 212- 223
[11]   ASSOCIATION W, Guidelines for the design of shield tunnel lining [J]. Tunnelling and Underground Space technology, 2000, 15(3): 303−331.
[12]   中华人民共和国住房和城乡建设部. 地铁设计规范: GB 50157—2013 [S]. 北京: 中国建筑工业出版社, 2013.
[13]   HOGNESTAD E Inelastic behavior in tests of eccentrically loaded short reinforced concrete columns[J]. American Concrete Institute Journal Proceedings, 1952, 49 (10): 117- 139
[14]   American Concrete Institute. Building code requirements for structural concrete and commentary: ACI 318−11 [S]. Farmington Hills: ACI, 2011.
[15]   PARK R, PAULAY T. Reinforced concrete structures [M]. New York: John Wiley and Sons, 1975.
[16]   TENG J G, HU Y M Behaviour of FRP−jacketed circular steel tubes and cylindrical shells under axial compression[J]. Construction and Building Materials, 2007, 21 (4): 827- 838
doi: 10.1016/j.conbuildmat.2006.06.016
[17]   潘友光, 钟善桐 钢管混凝土轴心受拉本构关系[J]. 工业建筑, 1990, (4): 30- 37
PAN You-guang, ZHONG Shan-tong The axis tensile constitutive relationship of concrete filled steel tubes[J]. Industrial Construction, 1990, (4): 30- 37
doi: 10.13204/j.gyjz1990.04.007
[18]   郑永来, 韩文星, 童琪华, 等 软土地铁隧道纵向不均匀沉降导致的管片接头环缝开裂研究[J]. 岩石力学与工程学报, 2005, 24 (24): 4552- 4558
ZHENG Yong-lai, HAN Wen-xing, TONG Qi-hua, et al Study on longitudinal crack of shield tunnel segment joint due to asymmetric settlement in soft soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24 (24): 4552- 4558
[19]   鲁志鹏. 基于静态量测数据的盾构法地铁隧道建设和运营安全评价研究[D]. 上海: 同济大学, 2008.
LU Zhi-peng. Study on the safety evaluation of tunnel construction and operation based on static measurement data [D]. Shanghai: Tongji University, 2008.
[20]   张迪, 陈睿杰, 廖少明 盾构隧道双层衬砌结构纵向等效弯曲刚度研究——以上海吴淞口长江隧道工程为例[J]. 隧道建设, 2021, 41 (Suppl.1): 28- 35
ZHANG Di, CHEN Rui-jie, LIAO Shao-ming Study of longitudinal equivalent bending stiffness of double−layered lining of shield tunnel: a case study of Wusongkou Yangtze River-crossing tunnel in Shanghai[J]. Tunnel Construction, 2021, 41 (Suppl.1): 28- 35
[1] Wei-hang CHEN,Qiang LUO,Teng-fei WANG,Wen-sheng ZHANG,Liang-wei JIANG. Reliability analysis of post-construction settlement of DMC composite foundation and design optimization[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2019-2027.
[2] Dan ZENG,Yang LIU,Lei CAO. Shear performance of innovative shear connectors in steel-UHPC composite structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1714-1724.
[3] Zheng ZHANG,Hao ZHANG,Hao CHAI,Hua-ping WU,Shao-fei JIANG. Design and performance analysis of variable stiffness multi-stable composite laminate structure[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1341-1346.
[4] Qing-pan KONG,Xian-bing JI,Ru-hong ZHOU,Tian-ya YOU,Jin-liang XU. Enhancement of steam condensation heat transfer on hydrophilic-hydrophobic two-layer structure surface[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1022-1028.
[5] Jin-feng WANG,Ai-ping ZHANG,Wen-hao WANG. Effects of stud height on shear behavior of stud connectors[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2076-2084.
[6] LUAN Cong-cong, YAO Xin-hua, LIU Cheng-zhe, FU Jian-zhong. Carbon fiber-thermoplastic composite 3D printing technology and its self-monitoring[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1808-1814.
[7] WANG Bing, HUANG Qiao, ZOU Yun, LI Wen-xian. Calculation model of residual bearing capacity for Perfobond connector and experimental verification[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1537-1543.
[8] LEI Ming wei, GONG Shun feng, Hu Qing. Buckling and collapse analysis for composite structures of deepwater sandwich pipes under pure bending[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2376-2386.
[9] GONG Shun-feng, HU Qing. Buckling and collapse analyses of composite structures for deepwater sandwich pipes under external pressure[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1624-1631.
[10] WANG Hui-ming, ZHAO Zhi-cheng. Effect of interfacial defect on Love waves in composite structures
with piezoelectric thin film
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(3): 555-559.
[11] WANG Zhen-Hua, DONG Dan-Lin, TIAN Wei, YUAN Hang-Fei. Experimental research on a composite structure combined of
cable dome and single-layer lattice shell
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(8): 1608-1614.
[12] OU Hai-Yang, LI Xiao-Yu, FU Zhan-Beng. Nonlinear principal axis mapping method applied in design optimization[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(1): 87-93.
[13] LIU Hai-Jiang, JI Yang-Jian, QI Guo-Ning, et al. Product integrated design knowledge model supporting multidisciplinary design optimization[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(10): 1841-1847.