Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (5): 1022-1028    DOI: 10.3785/j.issn.1008-973X.2020.05.021
Energy and Power Engineering     
Enhancement of steam condensation heat transfer on hydrophilic-hydrophobic two-layer structure surface
Qing-pan KONG(),Xian-bing JI*(),Ru-hong ZHOU,Tian-ya YOU,Jin-liang XU
Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy, North China Electric Power University, Beijing 102206, China
Download: HTML     PDF(1458KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A hydrophilic-hydrophobic two-layer surface was prepared based on the idea of synergistic drainage and bionics, using chemical etching, in order to study the condensation heat transfer performance of steam on different wettability structure surfaces. The two-layer surface is composed of one layer of superhydrophobic surface and the other layer of sintered mastoid structure, between which is a cavity. The effects of composited structure, subcooling and cooling water volume flow flux on condensation heat transfer were studied. Experimental results show that the hydrophilic-hydrophobic composited structure can improve the heat transfer coefficient. The condensation heat transfer coefficient of the composited structure is 4.8 and 1.8 times that of the smooth copper surface and the single superhydrophobic surface, respectively, when the subcooling is 5.0 K. There are two main driving forces in the movement process of condensed droplets towards the mastoid. One is the Laplace pressure difference force after contacting the mastoid structure, and the other is the capillary suction force produced by the pores in the mastoid. The condensation heat transfer coefficient of the combined surface gradually decreases with the increase of the cooling water volume flow and the increase of the degree of subcooling.



Key wordscondensation heat transfer      wettability      composite structure      multi-scale      cooperative drainage     
Received: 05 May 2019      Published: 05 May 2020
CLC:  TK 124  
Corresponding Authors: Xian-bing JI     E-mail: kongqp@ncepu.edu.cn;jxb@ncepu.edu.cn
Cite this article:

Qing-pan KONG,Xian-bing JI,Ru-hong ZHOU,Tian-ya YOU,Jin-liang XU. Enhancement of steam condensation heat transfer on hydrophilic-hydrophobic two-layer structure surface. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1022-1028.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.05.021     OR     http://www.zjujournals.com/eng/Y2020/V54/I5/1022


亲-疏水两层结构表面强化蒸汽冷凝传热

为了研究蒸汽在不同润湿性结构表面上的冷凝传热性能,基于协同排液思想和仿生理念,利用化学刻蚀法制备超疏水-超亲水两层结构表面:一层为超疏水表面,另一层为经双氧水氧化的烧结乳突结构表面,2层之间为空腔. 研究组合结构、过冷度和冷却水体积流量对冷凝传热的影响. 实验结果表明:亲-疏水组合结构表面的冷凝传热系数最高. 当过冷度为5.0 K时,组合结构表面的冷凝传热系数分别为光滑铜表面和单一超疏水表面的4.8、1.8倍. 冷凝形成的液滴在向乳突运动的过程中主要受到2个驱动力:接触乳突结构后受到的拉普拉斯压差作用力、乳突内部孔隙所产生的毛细吸力. 组合表面的冷凝传热系数随冷却水体积流量的增大和过冷度的增大而逐渐减小.


关键词: 冷凝传热,  润湿性,  组合结构,  多尺度,  协同排液 
Fig.1 Diagram of steam condensation experimental system in a closed chamber
Fig.2 Size and combination of superhydrophilic mastoids
Fig.3 SEM images of superhydrophobic and superhydrophilic surfaces
Fig.4 Imbibition performance of superhydrophilic and hydrophilic mastoids
Fig.5 Effect of characteristic surface on heat transfer coefficient
Fig.6 Effects of characteristic surface on heat flux
Fig.7 Schematic diagram of movement of droplets on surface and inside of mastoid
Fig.8 Effects of cooling water volume flow flux on heat transfer
[1]   BARAKO M T, GAMBIN V, TICE J Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications[J]. Nanotechnology, 2018, 29 (15): 154003
doi: 10.1088/1361-6528/aaabe1
[2]   宿吉强, 范黎, 高力 安全壳冷却系统蒸汽冷凝传热研究综述[J]. 原子能科学技术, 2016, 50 (11): 1956- 1966
SU Ji-qiang, FAN Li, GAO Li Review of steam condensation heat transfer under containment cooling system condition[J]. Atomic Energy Science and Technology, 2016, 50 (11): 1956- 1966
[3]   SNUSTAD I, R?E I T, BRUNSVOLD A, et al A review on wetting and water condensation-Perspectives for CO2 condensation [J]. Advances in Colloid and Interface Science, 2018, 256: 291- 304
doi: 10.1016/j.cis.2018.03.008
[4]   齐隽楠, 吴嘉峰, 陈亚平 疏水表面蒸汽滴状冷凝传热实验分析[J]. 制冷技术, 2015, 35 (3): 11- 14
QI Jun-nan, WU Jia-feng, CHEN Ya-ping Experimental analysis on dropwise condensation of steam onhydrophobic surfaces[J]. Chinese Journal of Refrigeration Technology, 2015, 35 (3): 11- 14
doi: 10.3969/j.issn.2095-4468.2015.03.103
[5]   LU M C, LIN C C, LO C W, et al Superhydrophobic Si nanowires for enhanced condensation heat transfer[J]. International Journal of Heat and Mass Transfer, 2017, 111: 614- 623
doi: 10.1016/j.ijheatmasstransfer.2017.04.021
[6]   LAN Z, MA X H, WANG S F, et al Effects of surface free energy and nanostructures on dropwise condensation[J]. Chemical Engineering Journal, 2010, 156 (3): 546- 552
doi: 10.1016/j.cej.2009.04.007
[7]   WIER K A, MCCARTHY T J Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: ultrahydrophobic surfaces are not always water repellant[J]. Langmuir, 2006, 22 (6): 2433- 2436
doi: 10.1021/la0525877
[8]   JI X B, ZHOU D D, DAI C, et al Dropwise condensation heat transfer on superhydrophilic-hydrophobic network hybrid surface[J]. International Journal of Heat and Mass Transfer, 2019, 132: 52- 67
doi: 10.1016/j.ijheatmasstransfer.2018.11.139
[9]   ALWAZZAN M, EGAB K, PENG B L, et al Condensation on hybrid-patterned copper tubes (I): characterization of condensation heat transfer[J]. International Journal of Heat and Mass Transfer, 2017, 112: 991- 1004
doi: 10.1016/j.ijheatmasstransfer.2017.05.039
[10]   HU H W, TANG G H, NIU D Experimental investigation of condensation heat transfer on hybrid wettability finned tube with large amount of noncondensable gas[J]. International Journal of Heat and Mass Transfer, 2015, 85: 513- 523
doi: 10.1016/j.ijheatmasstransfer.2015.02.006
[11]   彭本利, 马学虎, 兰忠, 等 组合表面调控液滴特性强化蒸汽冷凝传热[J]. 化工学报, 2015, 66 (10): 3826- 3833
PENG Ben-li, MA Xue-hu, LAN Zhong, et al Steam condensation heat transfer enhancement through droplet properties manipulation with hybrid surfaces[J]. CIESC Journal, 2015, 66 (10): 3826- 3833
[12]   KOCH K, BARTHLOTT W Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367 (1893): 1487- 1509
doi: 10.1098/rsta.2009.0022
[13]   OTHMER D F The condensation of steam[J]. Industrial and Engineering Chemistry, 1929, 21 (6): 576- 583
doi: 10.1021/ie50234a018
[14]   HUANG D J, LEU T S Condensation heat transfer enhancement by surface modification on a monolithic copper heat sink[J]. Applied Thermal Engineering, 2015, 75: 908- 917
doi: 10.1016/j.applthermaleng.2014.10.019
[15]   WENZEL R N Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28 (8): 988- 994
doi: 10.1021/ie50320a024
[16]   李翔, 齐宝金, 魏进家 差异化疏水铜表面的冷凝传热实验研究[J]. 工程热物理学报, 2018, 39 (2): 428- 433
LI Xiang, QI Bao-jin, WEI Jin-jia Experimental study of condensation heat transfer on the differentiated hydrophobic copper surfaces[J]. Journal of Engineering Thermophysics, 2018, 39 (2): 428- 433
[17]   SONG C, ZHENG Y Wetting-controlled strategies: from theories to bio-inspiration[J]. Journal of Colloid and Interface Science, 2014, 427: 2- 14
doi: 10.1016/j.jcis.2013.10.067
[18]   XUE Y, WANG T, SHI W, et al Water collection abilities of green bristlegrass bristle[J]. RSC Advances, 2014, 4 (77): 40837- 40840
doi: 10.1039/C4RA06661H
[19]   HAIDARA H, LEBEAU B, GRZELAKOWSKI C, et al Competitive spreading versus imbibition of polymer liquid drops in nanoporous membranes: scaling behavior with viscosity[J]. Langmuir, 2008, 24 (8): 4209- 4214
doi: 10.1021/la703538g
[1] Wen-tao YU,Xu XIE,Cheng CHENG. Effects of welding details on ultra-low cycle fatigue performance of T-welded joint[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 31-37.
[2] Qiao-hong CHEN,YI CHEN,Wen-shu Li,Yu-bo JIA. Clothing image classification based on multi-scale SE-Xception[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1727-1735.
[3] Tao MING,Dan WANG,Ji-chang GUO,Qiang LI. Breast cancer histopathological image classification using multi-scale channel squeeze-and-excitation model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1289-1297.
[4] Zheng ZHANG,Hao ZHANG,Hao CHAI,Hua-ping WU,Shao-fei JIANG. Design and performance analysis of variable stiffness multi-stable composite laminate structure[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1341-1346.
[5] Jin-feng WANG,Ai-ping ZHANG,Wen-hao WANG. Effects of stud height on shear behavior of stud connectors[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2076-2084.
[6] Yun CHEN,Xiao-dong CAI,Xiao-xi LIANG,Meng WANG. Efficient multi-scale pedestrian detection algorithm withfeature map aggregation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1218-1224.
[7] Shu-fang ZHANG,Tong ZHU. Traffic sign detection and recognition based on residual single shot multibox detector model[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 940-949.
[8] Zhi-jie LIN,Zhuang LUO,Lei ZHAO,Dong-ming LU. Multi-scale convolution target detection algorithm with feature pyramid[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 533-540.
[9] LIU Da-long, FENG Dong-qin. Deceptive attack detection of control system using multi-scale principal component analysis[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1738-1746.
[10] FANG Zhao, LI Ai-qun, LI Wan-run, SHEN Sheng. Verification on multi-scale finite element of wind-induced fatigue of steel structures[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1131-1139.
[11] DAI Chao, JI Xian-bing, ZHOU Dong-dong, WANG Ye, XU Jin-liang. Behavioral characteristics of droplet collision to different wettability surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 36-42.
[12] LUAN Cong-cong, YAO Xin-hua, LIU Cheng-zhe, FU Jian-zhong. Carbon fiber-thermoplastic composite 3D printing technology and its self-monitoring[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1808-1814.
[13] WANG Bing, HUANG Qiao, ZOU Yun, LI Wen-xian. Calculation model of residual bearing capacity for Perfobond connector and experimental verification[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1537-1543.
[14] LEI Ming wei, GONG Shun feng, Hu Qing. Buckling and collapse analysis for composite structures of deepwater sandwich pipes under pure bending[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2376-2386.
[15] GONG Shun-feng, HU Qing. Buckling and collapse analyses of composite structures for deepwater sandwich pipes under external pressure[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1624-1631.