Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (1): 36-42    DOI: 10.3785/j.issn.1008-973X.2018.01.006
Mechanical and Energy Engineering     
Behavioral characteristics of droplet collision to different wettability surfaces
DAI Chao, JI Xian-bing, ZHOU Dong-dong, WANG Ye, XU Jin-liang
Beijing Key Laboratory of Multiphase Flow and Heat Transfer, North China Electric Power University, Beijing 102206, China
Download:   PDF(2061KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Four types of surfaces were prepared in order to analyze the influence of wettability on the droplet collision behavior. They were superhydrophilic, hydrophilic, low adhesive superhydrophobic and high adhesive superhydrophobic surface. Collision experiment was conducted on four surfaces over a wide range of height. Droplet diameters were 1.96 mm, 2.61 mm, 3.06 mm respectively. Droplets exhibited different behavioral characteristics on four surfaces under different We. Droplets mainly exhibit spreading characteristics on hydrophilic and superhydrophilic surfaces, but the extension is more thorough on the superhydrophilic surface. Droplets mainly exhibit rebounce characteristics on low adhesive and high adhesive surface, and droplets can rebound entirely on low adhesive surface. Droplet behaviors could be divided into different regions in the coordinates of We versus Re. The tendency of expansion coefficient β with dimensionless time τ almost does not change and the maximum value of β can increase with the increase of We.



Received: 13 July 2017      Published: 15 December 2017
CLC:  TK124  
Cite this article:

DAI Chao, JI Xian-bing, ZHOU Dong-dong, WANG Ye, XU Jin-liang. Behavioral characteristics of droplet collision to different wettability surfaces. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 36-42.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.01.006     OR     http://www.zjujournals.com/eng/Y2018/V52/I1/36


液滴碰撞不同湿润性表面的行为特征

为了探究湿润性对液滴撞击行为特性的影响,制备超亲水、亲水、超疏水高黏附、超疏水低黏附4类湿润性表面.利用直径为1.96、2.61、3.06 mm的液滴,在不同的高度下开展液滴碰撞4类湿润性表面的实验.结果表明,在不同We下,液滴碰撞特性受撞击表面湿润性的影响较大,在亲水以及超亲水表面主要表现为铺展特性,但在超亲水表面扩展更显著;在超疏水低黏附以及高黏附表面主要表现为弹跳特性,但当表面为低黏附时,液滴主要表现为完全弹跳.在We-Re坐标下,4类表面各自的液滴碰撞特性可以划分为差异明显的不同铺展或者弹跳现象.4类表面各自的扩展系数β随无量纲时间τ的变化趋势随We的变化基本保持不变,但β的最大值随We的增大而增大.

[1] 郑志伟,李大树,仇性启,等.液滴碰撞球形凹曲面复合level set-VOF法的数值分析[J]. 化工学报, 2015, 5(66):1667-1675. ZHENG Zhi-wei, LI Da-shu, QIU Xing-qi, et al. Numerical analysis of coupled level set-VOF method on droplet impact on spherical concave surface[J]. Journal of Chemical Industry and Engineering, 2015, 5(66):1667-1675.
[2] 强洪夫,陈福振,高巍然.基于SPH方法的低韦伯数下三维液滴碰撞聚合与反弹数值模拟研究[J]. 工程力学, 2012, 29(2):21-28. QIANG Hong-fu, CHEN Fu-zhen, GAO Wei-ran. Simulation of coalescence and bouncing of three-dimensional droplet collisions with low weber numbers based on SPH method[J]. Engineering Mechanics, 2012, 29(2):21-28.
[3] RICHARD D,QUÉRÉ D. Bouncing water drops[J]. Europhys lett, 2000, 50(6):769-775.
[4] 王磊,淮秀兰,陶毓伽,等.喷雾冷却中微液滴碰撞薄液膜的流动与换热[J]. 工程热物理学报, 2010, 31(6):987-990. WANG Lei, HUAI Xiu-lan, TAO Yu-jia, et al. Flow and heat transfer of micro-droplet impact on thin liqud film during spray cooling[J]. Journal of Engineering Thermophysics, 2010, 31(6):987-990.
[5] 张迪,罗琦,黄伟,等.汽-水分离器内双液滴碰撞的数值模拟研究[J]. 核动力工程, 2015, 36(1):18-22. ZHANG Di, LUO Qi, HUANG Wei, et al. Numerical investigation of binary droplet collision in steam separator[J]. Nuclear Power Engineering, 2015, 36(1):18-22.
[6] 朱君悦,段远源,王晓东,等.流体在固体表面超铺展特性的研究进展[J]. 化工学报, 2014, 65(3):765-776. ZHU Jun-yue, GUAN Yuan-yuan, WANG Xiao-dong, et al. Review of super-spreading of fluids on solid substrates[J]. Journal of Chemical Industry and Engineering, 2014, 65(3):765-776.
[7] ŠIKALO S, MARENGO M, TROPEA C, et al. Analysis of impact of droplets on horizontal surfaces[J]. Experimental Thermal and Fluid Science, 2002, 25(7):503-510.
[8] RIOBOO R, VOUÉ M, VAILLANT A, et al. Drop impact on porous superhydrophobic polymer surfaces[J]. Langmuir the ACS Journal of Surfaces and Colloids, 2008, 24(24):14074-14077.
[9] ROELAND C V D V, HENDRIX M H, TRAN T, et al. How microstructures affect air film dynamics prior to drop impact[J]. Soft Matter, 2014, 10(21):3703.
[10] ZHANG W, YU T, FAN J, et al. Droplet impact behavior on heated micro-patterned surfaces[J]. Journal of Applied Physics, 2016, 119(11):13.
[11] WANG M J, HUNG Y L, LIN F H, et al. Dynamic behaviors of droplet impact and spreading:a universal relationship study of dimensionless wetting diameter and droplet height[J]. Experimental Thermal and Fluid Science, 2009, 33(7):1112-1118.
[12] LEMBACH A N, TAN H B, ROISMAN I V, et al. Drop impact, spreading, splashing, and penetration into electrospun nanofiber Mats[J]. Langmuir the ACS Journal of Surfaces and Colloids, 2010, 26(12):9516-9523.
[13] SEO J, LEE J S, KIM H Y, et al. Empirical model for the maximum spreading diameter of low-viscosity droplets on a dry wall[J]. Experimental Thermal and Fluid Science, 2015, 61:121-129.
[14] MADEJSKI J. Solidification of droplets on a cold surface[J]. International Journal of Heat and Mass Transfer, 1976, 19(9):1009-1013.
[15] ROISMAN I V. Inertia dominated drop collisions. Ⅱ. an analytical solution of the Navier-Stokes equations for a spreading viscous film[J]. Physics of Fluids, 2009, 21(5):296.
[16] DING H, LI E Q, ZHANG F H, et al. Propagation of capillary waves and ejection of small droplets in rapid droplet spreading[J]. Journal of Fluid Mechanics, 2012, 697(4):92-114.
[17] SUN R, BAI H, JU J,et al. Droplet emission induced by ultrafast spreading on a superhydrophilic surface[J]. Soft Matter, 2013, 9(39):9285-9289.
[18] CHEN L, WU J, LI Z, et al. Evolution of entrapped air under bouncing droplets on viscoelastic surfaces[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2011, 384(1-3):726-732.
[19] LIANG G T. Special phenomena of droplet impact on an inclined wetted surface with experimental observation[J]. Acta Physica Sinica, 2013, 62(8):084707.
[20] ROUX D C D, COOPER-WHITE J J. Dynamics of water spreading on a glass surface[J]. Journal of Colloid and Interface Science, 2004, 277(2):424-436.
[21] 杨卧龙,徐进良,纪献兵.超亲水多孔表面的小液滴发射行为及动力学特性[J]. 化工学报, 2016, 67(9):3607-3615. YANG Wo-long, XU Jin-liang, JI Xian-bing.Ejection profile and kinetics of droplets spreading on superhydrophilicporous surfaces[J]. Journal of Chemical Industry and Engineering, 2016, 67(9):3607-3615.
[22] HU H B, CHEN L B, HUANG S H, et al. Rebound behaviors of droplets impacting on a superhydrophobic surface[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(5):960-965.
[23] CHEN L, LI Z. Bouncing droplets onnonsuperhydrophobic surfaces[J]. Physical Review E Statistical Nonlinear and Soft Matter Physics, 2010, 82(1):016308.
[24] 胡海豹,陈立斌,黄苏和,等.水滴撞击黄铜基超疏水表面的破碎行为研究[J]. 摩擦学学报, 2013, 33(5):449-455. HU Hai-bao, CHEN Li-bin, HUANG Su-he, et al. Breakup Phenomenon of droplets impacting on a superhydrophobic brass surface[J]. Tribology, 2013, 33(5):449-455.
[25] TSAI P, HENDRIX M H W, DIJKSTRA R R M, et al. Microscopic structure influencing macroscopic splash at high Weber number[J]. Soft Matter, 2011, 7(24):11325-11333.
[26] BHUSHAN B, HER E K. Fabrication ofsuperhydrophobic surfaces with high and low adhesion inspired from rose petal[J]. Langmuir the ACS Journal of Surfaces and Colloids, 2010, 26(11):8207.
[27] BIANCE A L, CLANET C, QUÉRÉ D. First steps in the spreading of a liquid droplet[J]. Physical Review E Statistical Nonlinear and Soft Matter Physics, 2004, 69(1):016301.
[28] PASANDIDEH-FARD M, QIAO Y M, CHANDRA S, et al. Capillary effects during droplet impact on a solid surface[J]. Physics of Fluids, 1996, 8(3):650-659.

[1] MOU Lin-wei, ZHANG Yu-hong, LI Jia-qi, ZHANG Jia-yi, JIANG Ping, FAN Li-wu. Surface wicking effect on boiling heat transfer during quenching[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 960-965.
[2] YANG Ji-hu, SUN Zhi-jian, YUAN Rui-feng, HUANG Hao, CHEN Tian-yu, HU Ya-cai. Study on heat transfer and ash deposit characteristics of fluoroplastic steel air-preheater in power plant[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 577-583.
[3] ZHONG Xun, SHU Xiao-Chi, TUN Dun, JIANG Beng-Zao. Experimental investigation on alumina nanofluids in vehicle heat exchanger[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 761-764.
[4] LI Guan-Qiu, LI Wei, ZHANG Zheng-Jiang, ZHANG Wei, XU Zhi-Meng. Modeling particulate fouling in internal helicalrib tubes by  VonKarman analogy[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(3): 494-498.