Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (4): 857-866    DOI: 10.3785/j.issn.1008-973X.2024.04.021
    
Numerical analysis of tiltrotor/wing aerodynamic characteristics in continuous conversion mode
Mengtian WANG(),Tai JIN*(),Yaolong LIU
1. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(4505KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A numerical simulation framework was established, which was suitable for simulations of the continuous conversion mode of the tiltrotor based on the overset mesh method. The transition of a rotor/wing system from fixed-wing mode to helicopter mode was simulated for two important components in unmanned aerial vehicles, the rotor and the wing. Reynolds-averaged Navier-Stokes equations were used to analyze the variations of aerodynamic characteristics in different advance ratios and the effects of crosswind velocity on aerodynamic characteristics in conversion mode. Results show that the lift and drag coefficients of the wing decrease with the increase of the tilt angle, and the variation decreases with the increase of the advance ratio. The rotor thrust increases with the increase of the tilt angle, and the variation increases with the increase of the advance ratio. When there is crosswind in the incoming flow, the lift and drag coefficients of the wing decrease. The performance of the wing in low crosswind velocity is improved after the tilt angle reaches 65°. The magnitude of the thrust coefficient of the rotor is not significantly affected by crosswind, but the oscillation amplitude increases as a result.



Key wordstiltrotor aircraft      conversion mode      aerodynamic characteristics      overset mesh      numerical simulation     
Received: 22 May 2023      Published: 27 March 2024
CLC:  V 211.52  
Fund:  国家自然科学基金资助项目(52076194, 52236002).
Corresponding Authors: Tai JIN     E-mail: 12324020@zju.edu.cn;jintai@zju.edu.cn
Cite this article:

Mengtian WANG,Tai JIN,Yaolong LIU. Numerical analysis of tiltrotor/wing aerodynamic characteristics in continuous conversion mode. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 857-866.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.04.021     OR     https://www.zjujournals.com/eng/Y2024/V58/I4/857


倾转旋翼/机翼连续过渡状态气动性能仿真分析

基于重叠网格,构建适用于连续倾转过渡状态模拟的数值计算框架. 针对无人机中的2个重要部件——旋翼和机翼,模拟旋翼/机翼系统从固定翼模式倾转至直升机模式的过渡状态. 采用雷诺平均方程,比较不同前进比下的气动性能变化,分析侧风风速对过渡状态的气动性能影响. 结果表明,机翼升阻力系数随着倾转角的增大而减小,变化程度随着前进比的增大而减小;旋翼拉力随着倾转角的增大而增大,变化程度随着前进比的增大而增大. 当来流存在侧风情况时,机翼升阻力系数减小,在倾转角到65°后侧风风速较小时的机翼性能有一定提升. 旋翼的拉力系数大小受侧风影响不大,但振荡幅度会因此增大.


关键词: 倾转旋翼机,  过渡状态,  气动特性,  重叠网格,  数值仿真 
Fig.1 Three modes of tiltrotor/wing
Fig.2 Computational domain of numerical simulation
Fig.3 Girds along wing's symmetric plane of computational domain
Fig.4 Wing lift-time curves for different grids
Fig.5 Lift coefficient-advance ratio curves of simulation results and test results
算例n/(r·s?1)J算例n/(r·s?1)J
1147.570.200388.300.334
2116.330.254455.430.533
Tab.1 Parameter values for algorithm
Fig.6 Wing lift coefficient-time curves for different advance ratios
Fig.7 Pressure contour and streamline of flow field in yoz plane (J=0.2, α=90°)
Fig.8 Wing drag coefficient-time curves for different advance ratios
Fig.9 Rotor thrust-time curves for different advance ratios
Fig.10 Pressure contour of flow field between rotor and wing (J=0.2, α=90°)
Fig.11 Q-vortex structure of flow field at typical tilt angles with different advance ratios
Fig.12 Pressure contour of flow field at typical tilt angles with different advance ratios
Fig.13 Pressure coefficient of wing at typical tilt angles with different advance ratios
Fig.14 Wing lift coefficient-time curves for different crosswind velocities
Fig.15 Wing drag coefficient-time curves for different crosswind velocities
Fig.16 Pressure contour on upper and lower surfaces of wing at typical tilt angles with different crosswind velocities
Fig.17 Pressure coefficient of wing at different positions
Fig.18 Rotor thrust coefficient-time curves for different crosswind velocities
Fig.19 Pressure contour of flow field in rotor rotation plane (α=90°)
Fig.20 Q-vortex structure of flow field with different crosswind velocities (α=45°)
Fig.21 Pressure contour of flow field at typical tilt angles with different crosswind velocities
[1]   徐敏 倾转旋翼机的发展与关键技术综述[J]. 直升机技术, 2003, (2): 40- 44
XU Min A review on development and key technolo-gies of tiltrotor[J]. Helicopter Technique, 2003, (2): 40- 44
[2]   陈滔, 孟琳, 李楠, 等 飞机垂直/短距起降技术的研究[J]. 现代电子技术, 2014, 37 (23): 110- 114
CHEN Tao, MENG Lin, LI Nan, et al Study on V/STOL technology of aircraft[J]. Modern Electronics Technique, 2014, 37 (23): 110- 114
[3]   陈皓. 倾转旋翼机过渡模式下非定常气动力数值模拟[D]. 南京: 南京航空航天大学, 2018.
CHEN Hao. Numerical study on unsteady aerodynamic force of a tilt-rotor aircraft in conversion mode [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
[4]   招启军, 倪同兵, 李鹏, 等 倾转旋翼机流动机理及气动干扰特性试验[J]. 航空动力学报, 2018, 33 (12): 2900- 2912
ZHAO Qijun, NI Tongbin, LI Peng, et al Experiment on flow mechanism and aerodynamic interaction characteristics of tilt-rotor aircraft[J]. Journal of Aerospace Power, 2018, 33 (12): 2900- 2912
[5]   董凌华, 杨卫东, 张呈林 倾转旋翼/机翼耦合系统过渡状态气弹动力学试验研究[J]. 振动工程学报, 2008, 21 (5): 465- 470
DONG Linghua, YANG Weidong, ZHANG Chenglin Experiment on aeroelastic characteristics of tiltrotor aircraft in transition flight[J]. Journal of Vibration Engineering, 2008, 21 (5): 465- 470
[6]   CHINWICHARNAM K, ARIZA D G, MOSCHETTA J M, et al Aerodynamic characteristics of a low aspect ratio wing and propeller interaction for a tilt-body MAV[J]. International Journal of Micro Air Vehicle, 2013, 5 (4): 245- 260
doi: 10.1260/1756-8293.5.4.245
[7]   刘佳豪, 李高华, 王福新 倾转过渡状态旋翼-机翼气动干扰特性[J]. 航空学报, 2022, 43 (12): 126097
LIU Jiahao, LI Gaohua, WANG Fuxin Rotor-wing aerodynamic interference characteristics in conversion mode[J]. Acta Aeronautica et Astonautica Sinica, 2022, 43 (12): 126097
[8]   李鹏. 倾转旋翼机非定常气动特性分析及气动设计研究[D]. 南京: 南京航空航天大学, 2015.
LI Peng. Researches on aerodynamic design and analyses on unsteady aerodynamic characteristics of the tiltrotor aircraft [D]. Nanjing: Nanjing University of Aeronautics and Astro-nautics, 2015.
[9]   李鹏, 招启军, 汪正中, 等 过渡状态倾转旋翼气动力模拟的高效CFD方法[J]. 南京航空航天大学学报, 2015, 47 (2): 189- 197
LI Peng, ZHAO Qijun, WANG Zhengzhong, et al Highly-efficient CFD method for predicting aerodynamic force of tiltrotor in conversion mode[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2015, 47 (2): 189- 197
[10]   GARCIA A J, BARAKOS G N Numerical simulations on the ERICA tiltrotor[J]. Aerospace Science and Technology, 2017, 64: 171- 191
doi: 10.1016/j.ast.2017.01.023
[11]   杨海涛, 夏巍, 帅超, 等 倾转旋翼-机翼气动干扰准定常多重参考系仿真和风洞试验[J]. 科学技术与工程, 2021, 21 (32): 13958- 13964
YANG Haitao, XIA Wei, SHUAI Chao, et al Qusi-steady multiple reference frame simulation and wind tunnel test for the aerodynamic interference between tilt-rotors and wings[J]. Science Technology and Engineering, 2021, 21 (32): 13958- 13964
[12]   吴伟伟, 马存旺, 张练, 等 倾转旋翼机连续倾转过渡状态数值模拟[J]. 航空工程进展, 2021, 12 (3): 55- 64
WU Weiwei, MA Cunwang, ZHANG Lian, et al Numerical simulation of continuous tilting transition of tiltrotor aircraft[J]. Advances in Aeronautical Science and Engineering, 2021, 12 (3): 55- 64
[13]   刘聪, 魏志强, 韩红蓉, 等 侧风作用下无人机旋翼悬停状态气动响应分析[J]. 中国安全科学学报, 2021, 31 (9): 106- 112
LIU Cong, WEI Zhiqiang, HAN Hongrong, et al Aerodynamic response analysis of unmanned aerial vehicle rotor hovering under crosswind influence[J]. China Safety Science Journal, 2021, 31 (9): 106- 112
[14]   胡聪旭, 周建平, 刘新德, 等 前飞来流和侧风对植保无人机下洗流场影响的数值模拟研究[J]. 中国农机化学报, 2022, 43 (5): 61- 70
HU Congxun, ZHOU Jianpin, LIU Xinde, et al Numerical simulation of the effects incoming flow and crosswinds on airflow field of plant protection UAV[J]. Journal of Chinese Agricultural Mechanization, 2022, 43 (5): 61- 70
[15]   王建华. 基于重叠网格技术的船舶操纵运动直接数值模拟[D]. 上海: 上海交通大学, 2018.
WANG Jianhua. Direct simulations of ship maneuver using overset grid technique [D]. Shanghai: Shanghai Jiao Tong University, 2018.
[16]   蔡威. 基于重叠网格方法的浮式防波堤数值模拟研究[D]. 天津: 天津大学, 2019.
CAI Wei. Numerical simulation of floating breakwater based on overset grid method [D]. Tianjin: Tianjin University, 2019.
[17]   沈志荣. 船桨舵相互作用的重叠网格技术数值方法研究[D]. 上海: 上海交通大学, 2014.
SHEN Zhirong. Development of overset grid technique for hull-propeller-rudder interactions [D]. Shanghai: Shanghai Jiao Tong University, 2014.
[18]   林沐阳, 招启军, 赵国庆 基于滑移网格的倾转旋翼机全机干扰流场研究[J]. 航空科学技术, 2021, 32 (1): 100- 108
LIN Muyang, ZHAO Qijun, ZHAO Guoqing Research on the whole aircraft interference flow field of tilt-rotor aircraft based on sliding grid[J]. Aeronautical Science and Technology, 2021, 32 (1): 100- 108
[19]   LAUNDER B E, SPALDING D B The numerical com-putation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3 (2): 269- 289
doi: 10.1016/0045-7825(74)90029-2
[20]   SINNIGE T, VAN ARNHEM N, STOKKERMANS T C A, et al Wingtip-mounted propellers aerodynamic analysis of interaction affects and comparison with conventional layout[J]. Journal of Aircraft, 2019, 56 (1): 295- 312
doi: 10.2514/1.C034978
[21]   翟若岱. 太阳能飞机高效率螺旋桨设计关键技术研究[D]. 沈阳: 沈阳航空航天大学, 2017.
ZHAI Ruodai. Research on key technology of high efficiency propeller design for solar powered aircraft [D]. Shenyang: Shenyang Aerospace University, 2017.
[1] Jun-cheng LIU,Yong TAN,Xiang-hua SONG,Dong-dong FAN,Tian-ren LIU. Effects of through-wall leaking during excavation in water-rich sand on lateral wall deflections and surrounding environment[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 530-541.
[2] Yi-cun WANG,Chang-xiao SHAO,Tai JIN,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Representation of combustion thermochemical manifolds via multi-gate mixture of experts[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2401-2411.
[3] Ting-wei JI,Xu ZHA,Fang-fang XIE,Yu-si WU,Xin-shuai ZHANG,Yi-yang JIANG,Chang-ping DU,Yao ZHENG. Multi-fidelity aerodynamic modeling method of aerospace vehicles based on Gaussian process regression[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2314-2324.
[4] Guo-peng LYU,Nan JIANG,Chuan-bo ZHOU,Hai-bo LI,Ying-kang YAO,Xu ZHANG. Surface explosion induced crack extension mechanism of reinforced concrete pipeline[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1704-1713.
[5] Jun SHI,Ying-ning QIU,Yi ZHOU. Direct numerical simulation of temporally evolving fractal-generated turbulence[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1606-1621.
[6] Gen LI,Tong-chun HAN,Jun-yang WU,Yu ZHANG. Coupled analysis on surface runoff and soil water movement by finite volume method[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 947-955.
[7] Meng-fan LIU,Gang-feng WU,Ke-feng ZHANG,Ping DONG. 2D non-cohesive earthen embankment breach model based on linear erosion formula[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 569-578.
[8] Shuai-ling GAO,Jun-qiang XIA,Bo-liang DONG,Mei-rong ZHOU,Jing-ming HOU. Mathematical model for urban flooding with effect of drainage of street inlets[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 590-597.
[9] Dong-jiao WANG,Chang-run CHEN,Kun LIU,Shou-qiang QIU. Investigation on parametrically excited motions of multiple degrees of freedom wave energy converter[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2496-2506.
[10] Yi-cun WANG,Jiang-kuan XING,Kun LUO,Hai-ou WANG,Jian-ren FAN. Solving combustion chemical differential equations via physics-informed neural network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2084-2092.
[11] Jun ZHANG,Yu-min CUI,Hong-zhou HE. Numerical calculation model on discrete droplet deformation in liquid-liquid system under electric field[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1391-1398.
[12] Jia-hao REN,Hai-ou WANG,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Lower-dimensional approximation models of tangential strain rate of turbulent flames[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1128-1134.
[13] Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.
[14] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[15] Chao-feng ZENG,Shuo WANG,Zhi-cheng YUAN,Xiu-li XUE. Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 338-347.