|
|
Effects of through-wall leaking during excavation in water-rich sand on lateral wall deflections and surrounding environment |
Jun-cheng LIU1,2(),Yong TAN1,2,*(),Xiang-hua SONG1,2,Dong-dong FAN1,2,Tian-ren LIU1,2 |
1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China |
|
|
Abstract Based on two severe through-wall leaking accidents during deep excavations in water-rich sandy strata, the deformation behaviors of the excavation during leaking were investigated and the major causes incurring the accidents were summarized by field investigation and review of measured data. To reveal the disaster-causing mechanism of leakages, a 3D fluid-solid coupled numerical model was established and several leaking scenarios were analyzed. The results indicate that the leaking accidents occur suddenly during excavation in water-rich sandy strata. When the leakage takes place at 1.075 times the final excavation depth, the total hydraulic gradient and water-earth pressure behind the wall undergo a sudden increment up to 9-12 times and 3-3.6 times those before the incident, respectively, causing a rapid increase in lateral wall displacements. Compared with the case leaking below the excavation surface, a greater increment of ground settlement, a closer distance between the location at which the maximum increment happens and the excavation pit, and a larger affected region will be incurred for the cases where the through-wall leakages are exactly at or above the excavation surface. In addition to the obvious effects of load-bearing and isolating deformation, the dynamic seepage forces during leaking can also be weakened by the isolation piles. However, when the pile length exceeds the optimal value (1.6 times the final excavation depth), the improvement on protective effects of the isolation piles is no longer obvious.
|
Received: 31 March 2022
Published: 31 March 2023
|
|
Fund: 国家自然科学基金资助项目(42177179) |
Corresponding Authors:
Yong TAN
E-mail: liujuncheng@tongji.edu.cn;tanyong21th@tongji.edu.cn
|
富水砂土基坑渗水对侧墙变形和周边环境的影响
依托富水砂土深基坑工程2次墙体严重渗水事故,通过现场调查和实测数据回顾,分析渗水期间基坑变形特性并总结事故原因. 建立三维流固耦合数值模型揭示渗水灾变机理,对墙体渗水多种复杂工况展开研究. 结果表明,富水砂土基坑渗水事故具有突发性,墙体1.075倍最终开挖深度处发生渗水可使墙后总水力梯度和水土压力分别突增至事故前的9.0~12.0倍和3.0~3.6倍,导致地连墙侧向位移快速增长. 相较于开挖面以下渗水工况,开挖面及以上墙体渗水引起的坑外地表沉降增量更大,最大增量处距坑边更近,且影响范围更大. 除了明显的承载和阻隔变形作用,隔离桩还能有效削弱渗水时动水力的作用,但当桩长超过最优临界值(1.6倍最终开挖深度)时,隔离桩保护效果的改善将不再明显.
关键词:
富水砂层,
深基坑,
渗水,
隔离桩,
数值模拟
|
|
[1] |
曾超峰, 王硕, 袁志成, 等 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报: 工学版, 2021, 55 (2): 338- 347 ZENG Chao-feng, WANG Shuo, YUAN Zhi-cheng, et al Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (2): 338- 347
|
|
|
[2] |
TAN Y, WANG D L, LU Y, et al Excavation of Middle Huai-Hai Road Station of Shanghai Metro Line 13: challenges, risks, countermeasures, and performance assessment[J]. Practice Periodical on Structural Design and Construction, 2017, 22 (3): 05017003
doi: 10.1061/(ASCE)SC.1943-5576.0000320
|
|
|
[3] |
TAN Y, LU Y Forensic diagnosis of a leaking accident during excavation[J]. Journal of Performance of Constructed Facilities, 2017, 31 (5): 04017061
doi: 10.1061/(ASCE)CF.1943-5509.0001058
|
|
|
[4] |
WU Y X, LYU H M, SHEN S L, et al A three-dimensional fluid-solid coupled numerical modeling of the barrier leakage below the excavation surface due to dewatering[J]. Hydrogeology Journal, 2020, 28: 1449- 1463
doi: 10.1007/s10040-020-02142-w
|
|
|
[5] |
周红波, 蔡来炳 软土地区深基坑工程承压水风险与控制[J]. 同济大学学报: 自然科学版, 2015, 43 (1): 27- 32 ZHOU Hong-bo, CHAI Lai-bing Risk and control of the artesian water for deep excavation engineering in soft soil area[J]. Journal of Tongji University: Natural Science, 2015, 43 (1): 27- 32
|
|
|
[6] |
NI J C, CHENG W C Characterizing the failure pattern of a station box of Taipei rapid transit system (TRTS) and its rehabilitation[J]. Tunnelling and Underground Space Technology, 2012, 32: 260- 272
doi: 10.1016/j.tust.2012.06.010
|
|
|
[7] |
KORFF M, MAIR R J, TOL A F V, et al Building damage and repair due to leakage in a deep excavation[J]. Forensic Engineering, 2011, 164 (4): 165- 177
|
|
|
[8] |
秦尚林, 王红亮, 克高果 深井降水基坑涌水涌砂原因分析及对策[J]. 岩土力学, 2005, 26 (Suppl.2): 271- 274 QING Shang-lin, WANG Hong-liang, KE Gao-guo Analysis of water and sand gushing out of a foundation pit and prevention countermeasures[J]. Rock and Soil Mechanics, 2005, 26 (Suppl.2): 271- 274
doi: 10.16285/j.rsm.2005.s2.065
|
|
|
[9] |
蒋锋平, 刘国彬 深基坑地下墙漏水引起地面沉降分析[J]. 岩土工程学报, 2010, 32 (Suppl.2): 574- 577 JIANG Feng-ping, LIU Guo-bin Surface subsidence caused by water seeping through diaphragm wall of deep foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (Suppl.2): 574- 577
|
|
|
[10] |
赵云非, 王晓琳 城市地铁深基坑施工渗漏水原因分析与预防[J]. 隧道建设, 2013, 33 (3): 242- 246 ZHAO Yun-fei, WANG Xiao-lin Cause analysis on and prevention of water seepages during construction of deep foundation pits of metro works in urban areas[J]. Tunnel Construction, 2013, 33 (3): 242- 246
|
|
|
[11] |
WU Y X, SHEN S L, LYU H M, et al Analyses of leakage effect of waterproof curtain during excavation dewatering[J]. Journal of Hydrology, 2020, 583: 124582
doi: 10.1016/j.jhydrol.2020.124582
|
|
|
[12] |
黄帆, 姚远, 张豪. 开挖条件下基坑渗流过程数值模拟研究 [C]// 2021年工业建筑学术交流会论文集(中册). 北京: [s.n.], 2021: 290-292+283. HUANG Fan, YAO Yuan, ZHANG Hao. Numerical simulation of seepage process of foundation pit under excavation condition [C]// Proceedings of the 2021 Industrial Architecture Academic Exchange Conference (Volume 2). Beijing: [s.n.], 2021: 290-292+283.
|
|
|
[13] |
樊冬冬, 刘祥勇, 景旭成, 等 南通富水砂性地层地铁深基坑墙体渗漏原因分析[J]. 隧道建设(中英文), 2020, 40 (Suppl.1): 225- 231 FAN Dong-dong, LIU Xiang-yong, JING Xun-cheng, et al Causes analysis on wall leaking of metro foundation pit in Nantong water-rich sandy stratum[J]. Tunnel Construction, 2020, 40 (Suppl.1): 225- 231
|
|
|
[14] |
ZHENG G, DIAO Y Environmental impact of ground deformation caused by underground construction in China[J]. Japanese Geotechnical Society Special Publication, 2016, 2 (1): 10- 24
doi: 10.3208/jgssp.KL-2
|
|
|
[15] |
HSIEH P G, OU C Y Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35 (6): 1007
|
|
|
[16] |
郑刚, 杜一鸣, 刁钰 隔离桩对基坑外既有隧道变形控制的优化分析[J]. 岩石力学与工程学报, 2015, 34 (Suppl.1): 3499- 3509 ZHENG Gang, DU Yi-ming, DIAO Yu Optimization analysis of efficiency of isolation piles in controlling the deformation of existing tunnels adjacent to deep excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (Suppl.1): 3499- 3509
doi: 10.13722/j.cnki.jrme.2014.0235
|
|
|
[17] |
翟杰群, 贾坚, 谢小林 隔离桩在深基坑开挖保护相邻建筑中的应用[J]. 地下空间与工程学报, 2010, 6 (1): 162- 166 ZHAI Jie-qun, JIA Jian, XIE Xiao-lin Practice of partition wall in the building protection projects near deep excavation[J]. Chinese Journal of Underground Space and Engineering, 2010, 6 (1): 162- 166
|
|
|
[18] |
刘建航, 侯学渊, 刘国彬, 等. 基坑工程手册: 第2版[M]. 北京: 中国建筑工业出版社, 2009.
|
|
|
[19] |
徐中华, 王卫东 敏感环境下基坑数值分析中土体本构模型的选择[J]. 岩土力学, 2010, 31 (1): 258- 264+326 XU Zhong-hua, WANG Wei-dong Selection of soil constitutive models for numerical analysis of deep excavations in close proximity to sensitive properties[J]. Rock and Soil Mechanics, 2010, 31 (1): 258- 264+326
doi: 10.3969/j.issn.1000-7598.2010.01.044
|
|
|
[20] |
张飞, 李镜培, 唐耀 考虑土体硬化的基坑开挖性状及隆起稳定性分析[J]. 水文地质工程地质, 2012, 39 (2): 79- 84 ZHANG Fei, LI Jing-pei, TANG Yao Investigation of excavation characters and basal stability with considering soil hardening behavior[J]. Hydrogeology and Engineering Geology, 2012, 39 (2): 79- 84
doi: 10.16030/j.cnki.issn.1000-3665.2012.02.013
|
|
|
[21] |
尚桌, 葛忻声, 王菁悦, 等. 深基坑水平封底在富水深厚砂层的加固效果 [J]. 太原理工大学学报, 2022, 53(4): 786-792. SHANG Zhuo, GE Xin-sheng, WANG Jing-yue, et al. Reinforcement effect of horizontal bottom sealing of deep foundation pit in water-rich and deep sand layer [J]. Journal of Taiyuan University of Technology, 2022, 53(4): 786-792.
|
|
|
[22] |
薛清鹏 基于土体硬化模型的紧邻铁路基坑变形分析[J]. 铁道工程学报, 2015, 32 (2): 39- 42+92 XUE Qing-peng Analysis of the deep excavations deformation close to the existing operating railway based on hardening-soil model[J]. Journal of Railway Engineering Society, 2015, 32 (2): 39- 42+92
|
|
|
[23] |
吴波, 许杰, 黄惟, 等 富水砂层刚度参数敏感性分析及地表沉降预测[J]. 中国安全生产科学技术, 2020, 16 (9): 96- 102 WU Bo, XU Jie, HUANG Wei, et al Sensitivity analysis of stiffness parameter and prediction of ground settlement for watered sandy stratum[J]. Journal of Safety Science and Technology, 2020, 16 (9): 96- 102
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|