Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (3): 530-541    DOI: 10.3785/j.issn.1008-973X.2023.03.011
    
Effects of through-wall leaking during excavation in water-rich sand on lateral wall deflections and surrounding environment
Jun-cheng LIU1,2(),Yong TAN1,2,*(),Xiang-hua SONG1,2,Dong-dong FAN1,2,Tian-ren LIU1,2
1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
Download: HTML     PDF(2151KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Based on two severe through-wall leaking accidents during deep excavations in water-rich sandy strata, the deformation behaviors of the excavation during leaking were investigated and the major causes incurring the accidents were summarized by field investigation and review of measured data. To reveal the disaster-causing mechanism of leakages, a 3D fluid-solid coupled numerical model was established and several leaking scenarios were analyzed. The results indicate that the leaking accidents occur suddenly during excavation in water-rich sandy strata. When the leakage takes place at 1.075 times the final excavation depth, the total hydraulic gradient and water-earth pressure behind the wall undergo a sudden increment up to 9-12 times and 3-3.6 times those before the incident, respectively, causing a rapid increase in lateral wall displacements. Compared with the case leaking below the excavation surface, a greater increment of ground settlement, a closer distance between the location at which the maximum increment happens and the excavation pit, and a larger affected region will be incurred for the cases where the through-wall leakages are exactly at or above the excavation surface. In addition to the obvious effects of load-bearing and isolating deformation, the dynamic seepage forces during leaking can also be weakened by the isolation piles. However, when the pile length exceeds the optimal value (1.6 times the final excavation depth), the improvement on protective effects of the isolation piles is no longer obvious.



Key wordswater-rich sandy strata      deep excavation      leaking      isolation pile      numerical simulation     
Received: 31 March 2022      Published: 31 March 2023
CLC:  TU 476.3  
Fund:  国家自然科学基金资助项目(42177179)
Corresponding Authors: Yong TAN     E-mail: liujuncheng@tongji.edu.cn;tanyong21th@tongji.edu.cn
Cite this article:

Jun-cheng LIU,Yong TAN,Xiang-hua SONG,Dong-dong FAN,Tian-ren LIU. Effects of through-wall leaking during excavation in water-rich sand on lateral wall deflections and surrounding environment. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 530-541.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.03.011     OR     https://www.zjujournals.com/eng/Y2023/V57/I3/530


富水砂土基坑渗水对侧墙变形和周边环境的影响

依托富水砂土深基坑工程2次墙体严重渗水事故,通过现场调查和实测数据回顾,分析渗水期间基坑变形特性并总结事故原因. 建立三维流固耦合数值模型揭示渗水灾变机理,对墙体渗水多种复杂工况展开研究. 结果表明,富水砂土基坑渗水事故具有突发性,墙体1.075倍最终开挖深度处发生渗水可使墙后总水力梯度和水土压力分别突增至事故前的9.0~12.0倍和3.0~3.6倍,导致地连墙侧向位移快速增长. 相较于开挖面以下渗水工况,开挖面及以上墙体渗水引起的坑外地表沉降增量更大,最大增量处距坑边更近,且影响范围更大. 除了明显的承载和阻隔变形作用,隔离桩还能有效削弱渗水时动水力的作用,但当桩长超过最优临界值(1.6倍最终开挖深度)时,隔离桩保护效果的改善将不再明显.


关键词: 富水砂层,  深基坑,  渗水,  隔离桩,  数值模拟 
Fig.1 Plan layout of monitoring points of excavations and schematic diagram of TV tower section
Fig.2 Hydrogeological profile of station site
土层编号 土层名称 w/% γ/(kN·m?3) e Es0.1~0.2/MPa c/kPa φ/(°) KH/(cm·s?1) KV/(cm·s?1)
砂质粉土 30.7 18.4 0.870 8.49 7.7 22.0 2.64×10?5 5.22×10?5
③-1 砂质粉土夹粉砂 30.2 18.4 0.867 11.38 4.5 27.5 1.81×10?3 3.94×10?3
③-2 粉砂 29.0 18.6 0.832 12.96 4.6 32.0 1.27×10?3 4.39×10?3
④-2 粉质黏土夹粉土 33.6 18.1 0.968 5.57 11.0 18.5 4.19×10?6 2.78×10?5
④-2t 砂质粉土夹粉质黏土 31.2 18.3 0.898 8.43 6.3 21.0 2.13×10?4 9.79×10?4
⑤-1 粉砂夹粉土 30.0 18.4 0.874 9.67 5.2 30.0 4.83×10?4 2.35×10?3
⑤-2 砂质粉土夹粉质黏土 30.6 18.3 0.893 8.69 6.6 27.0 4.60×10?4 1.75×10?3
⑤-3 粉砂夹粉土 29.9 18.5 0.855 13.69 4.9 32.0 1.69×10?3 3.39×10?3
粉砂 28.0 18.7 0.809 15.38 2.9 35.0 3.22×10?3 6.64×10?3
Tab.1 Physical and mechanical parameters of soil layers at site
Fig.3 Typical profile of excavation at leaking spot
事故编号(埋深) 时间节点 事故描述
第1次渗水
(约21.5 m)
2020-11-01, 7:40 东侧端头井垫层下方约1.5 m处(详见图3)出现轻微冒水
2020-11-01, 8:30 冒水量突然增大但无砂土颗粒流出,施工单位立即组织抢险
2020-11-01, 9:30 坑内渗水点附近完成初步反压体堆码,坑外引孔注入聚氨酯止水
2020-11-01, 9:38 坑内出现大量聚氨酯,渗漏水得到控制
2020-11-01, 10:11 开始在坑外引孔注入水泥-水玻璃双液浆进行地层加固
2020-11-01, 12:00 渗水点停止冒水
第2次渗水
(约15.0 m)
2020-11-03, 10:00 第5道支撑预埋钢板位置(详见图3)发生渗漏水,大量清水从接缝裂隙处流出,施工单位随即采用木楔子堵漏,1 h后渗水得以控制
Tab.2 Development process of water leaking accidents at pit 2
Fig.4 In-situ photo of blocking leakage after accident
Fig.5 Lateral deflection variations of diaphragm walls
Fig.6 Maximum lateral deflection variations of diaphragm walls
Fig.7 Variations of TV tower settlements
Fig.8 Variation in groundwater levels of observed wells at site
Fig.9 Distribution of permeability coefficients for each soil layer
Fig.10 Schematic illustration of three dimensional numerical model of foundation pit
结构构件 $ {\gamma }_{\mathrm{s}\mathrm{e}} $/(kN·m?3) E/GPa υ
地连墙、隔离桩 25 34.5 0.22
电视塔桩、立柱桩 25 30.5 0.20
混凝土支撑 25 30.5 0.20
钢支撑 77 205 0.20
Tab.3 Parameters of structural members in numerical model
土层编号 $ {E}_{50}^{\mathrm{r}\mathrm{e}\mathrm{f}} $/MPa $ {E}_{\mathrm{o}\mathrm{e}\mathrm{d}}^{\mathrm{r}\mathrm{e}\mathrm{f}} $/MPa $ {E}_{\mathrm{u}\mathrm{r}}^{\mathrm{r}\mathrm{e}\mathrm{f}} $/MPa pref/(kN·m?2) Rf m ψ/(°) υ Rint
8.5 8.5 42.4 100 0.9 0.5 0 0.30 0.65
③-1 11.4 11.4 56.9 100 0.9 0.5 0 0.26 0.65
③-2 13.0 13.0 64.8 100 0.9 0.5 2 0.24 0.65
④-2 5.6 5.6 27.8 100 0.9 0.8 0 0.32 0.70
④-2t 8.4 8.4 42.2 100 0.9 0.5 0 0.30 0.65
⑤-1 9.7 9.7 4.8 100 0.9 0.5 0 0.25 0.65
⑤-2 8.7 8.7 43.4 100 0.9 0.8 0 0.27 0.70
⑤-3 13.7 13.7 68.4 100 0.9 0.5 2 0.26 0.65
15.4 15.4 76.9 100 0.9 0.5 5 0.23 0.65
Tab.4 Principal parameters for hardening soil constitutive model
Fig.11 Schematic diagram of leaking element
Fig.12 Validation of numerical model for first through-wall leakage
Fig.13 Total hydraulic gradient behind walls
Fig.14 Water-earth pressure behind walls and lateral wall deflections
Fig.15 Effects of different leaking locations on ground settlement increment outside pit
Fig.16 Variation of ground settlement increment regarding to cases with and without isolation piles
Fig.17 Distributions of groundwater flow path
Fig.18 Distributions of piezometric heads
Fig.19 Relative increment at point P varies with isolation pile lengths
[1]   曾超峰, 王硕, 袁志成, 等 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报: 工学版, 2021, 55 (2): 338- 347
ZENG Chao-feng, WANG Shuo, YUAN Zhi-cheng, et al Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (2): 338- 347
[2]   TAN Y, WANG D L, LU Y, et al Excavation of Middle Huai-Hai Road Station of Shanghai Metro Line 13: challenges, risks, countermeasures, and performance assessment[J]. Practice Periodical on Structural Design and Construction, 2017, 22 (3): 05017003
doi: 10.1061/(ASCE)SC.1943-5576.0000320
[3]   TAN Y, LU Y Forensic diagnosis of a leaking accident during excavation[J]. Journal of Performance of Constructed Facilities, 2017, 31 (5): 04017061
doi: 10.1061/(ASCE)CF.1943-5509.0001058
[4]   WU Y X, LYU H M, SHEN S L, et al A three-dimensional fluid-solid coupled numerical modeling of the barrier leakage below the excavation surface due to dewatering[J]. Hydrogeology Journal, 2020, 28: 1449- 1463
doi: 10.1007/s10040-020-02142-w
[5]   周红波, 蔡来炳 软土地区深基坑工程承压水风险与控制[J]. 同济大学学报: 自然科学版, 2015, 43 (1): 27- 32
ZHOU Hong-bo, CHAI Lai-bing Risk and control of the artesian water for deep excavation engineering in soft soil area[J]. Journal of Tongji University: Natural Science, 2015, 43 (1): 27- 32
[6]   NI J C, CHENG W C Characterizing the failure pattern of a station box of Taipei rapid transit system (TRTS) and its rehabilitation[J]. Tunnelling and Underground Space Technology, 2012, 32: 260- 272
doi: 10.1016/j.tust.2012.06.010
[7]   KORFF M, MAIR R J, TOL A F V, et al Building damage and repair due to leakage in a deep excavation[J]. Forensic Engineering, 2011, 164 (4): 165- 177
[8]   秦尚林, 王红亮, 克高果 深井降水基坑涌水涌砂原因分析及对策[J]. 岩土力学, 2005, 26 (Suppl.2): 271- 274
QING Shang-lin, WANG Hong-liang, KE Gao-guo Analysis of water and sand gushing out of a foundation pit and prevention countermeasures[J]. Rock and Soil Mechanics, 2005, 26 (Suppl.2): 271- 274
doi: 10.16285/j.rsm.2005.s2.065
[9]   蒋锋平, 刘国彬 深基坑地下墙漏水引起地面沉降分析[J]. 岩土工程学报, 2010, 32 (Suppl.2): 574- 577
JIANG Feng-ping, LIU Guo-bin Surface subsidence caused by water seeping through diaphragm wall of deep foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (Suppl.2): 574- 577
[10]   赵云非, 王晓琳 城市地铁深基坑施工渗漏水原因分析与预防[J]. 隧道建设, 2013, 33 (3): 242- 246
ZHAO Yun-fei, WANG Xiao-lin Cause analysis on and prevention of water seepages during construction of deep foundation pits of metro works in urban areas[J]. Tunnel Construction, 2013, 33 (3): 242- 246
[11]   WU Y X, SHEN S L, LYU H M, et al Analyses of leakage effect of waterproof curtain during excavation dewatering[J]. Journal of Hydrology, 2020, 583: 124582
doi: 10.1016/j.jhydrol.2020.124582
[12]   黄帆, 姚远, 张豪. 开挖条件下基坑渗流过程数值模拟研究 [C]// 2021年工业建筑学术交流会论文集(中册). 北京: [s.n.], 2021: 290-292+283.
HUANG Fan, YAO Yuan, ZHANG Hao. Numerical simulation of seepage process of foundation pit under excavation condition [C]// Proceedings of the 2021 Industrial Architecture Academic Exchange Conference (Volume 2). Beijing: [s.n.], 2021: 290-292+283.
[13]   樊冬冬, 刘祥勇, 景旭成, 等 南通富水砂性地层地铁深基坑墙体渗漏原因分析[J]. 隧道建设(中英文), 2020, 40 (Suppl.1): 225- 231
FAN Dong-dong, LIU Xiang-yong, JING Xun-cheng, et al Causes analysis on wall leaking of metro foundation pit in Nantong water-rich sandy stratum[J]. Tunnel Construction, 2020, 40 (Suppl.1): 225- 231
[14]   ZHENG G, DIAO Y Environmental impact of ground deformation caused by underground construction in China[J]. Japanese Geotechnical Society Special Publication, 2016, 2 (1): 10- 24
doi: 10.3208/jgssp.KL-2
[15]   HSIEH P G, OU C Y Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35 (6): 1007
[16]   郑刚, 杜一鸣, 刁钰 隔离桩对基坑外既有隧道变形控制的优化分析[J]. 岩石力学与工程学报, 2015, 34 (Suppl.1): 3499- 3509
ZHENG Gang, DU Yi-ming, DIAO Yu Optimization analysis of efficiency of isolation piles in controlling the deformation of existing tunnels adjacent to deep excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (Suppl.1): 3499- 3509
doi: 10.13722/j.cnki.jrme.2014.0235
[17]   翟杰群, 贾坚, 谢小林 隔离桩在深基坑开挖保护相邻建筑中的应用[J]. 地下空间与工程学报, 2010, 6 (1): 162- 166
ZHAI Jie-qun, JIA Jian, XIE Xiao-lin Practice of partition wall in the building protection projects near deep excavation[J]. Chinese Journal of Underground Space and Engineering, 2010, 6 (1): 162- 166
[18]   刘建航, 侯学渊, 刘国彬, 等. 基坑工程手册: 第2版[M]. 北京: 中国建筑工业出版社, 2009.
[19]   徐中华, 王卫东 敏感环境下基坑数值分析中土体本构模型的选择[J]. 岩土力学, 2010, 31 (1): 258- 264+326
XU Zhong-hua, WANG Wei-dong Selection of soil constitutive models for numerical analysis of deep excavations in close proximity to sensitive properties[J]. Rock and Soil Mechanics, 2010, 31 (1): 258- 264+326
doi: 10.3969/j.issn.1000-7598.2010.01.044
[20]   张飞, 李镜培, 唐耀 考虑土体硬化的基坑开挖性状及隆起稳定性分析[J]. 水文地质工程地质, 2012, 39 (2): 79- 84
ZHANG Fei, LI Jing-pei, TANG Yao Investigation of excavation characters and basal stability with considering soil hardening behavior[J]. Hydrogeology and Engineering Geology, 2012, 39 (2): 79- 84
doi: 10.16030/j.cnki.issn.1000-3665.2012.02.013
[21]   尚桌, 葛忻声, 王菁悦, 等. 深基坑水平封底在富水深厚砂层的加固效果 [J]. 太原理工大学学报, 2022, 53(4): 786-792.
SHANG Zhuo, GE Xin-sheng, WANG Jing-yue, et al. Reinforcement effect of horizontal bottom sealing of deep foundation pit in water-rich and deep sand layer [J]. Journal of Taiyuan University of Technology, 2022, 53(4): 786-792.
[22]   薛清鹏 基于土体硬化模型的紧邻铁路基坑变形分析[J]. 铁道工程学报, 2015, 32 (2): 39- 42+92
XUE Qing-peng Analysis of the deep excavations deformation close to the existing operating railway based on hardening-soil model[J]. Journal of Railway Engineering Society, 2015, 32 (2): 39- 42+92
[23]   吴波, 许杰, 黄惟, 等 富水砂层刚度参数敏感性分析及地表沉降预测[J]. 中国安全生产科学技术, 2020, 16 (9): 96- 102
WU Bo, XU Jie, HUANG Wei, et al Sensitivity analysis of stiffness parameter and prediction of ground settlement for watered sandy stratum[J]. Journal of Safety Science and Technology, 2020, 16 (9): 96- 102
[1] Guo-peng LYU,Nan JIANG,Chuan-bo ZHOU,Hai-bo LI,Ying-kang YAO,Xu ZHANG. Surface explosion induced crack extension mechanism of reinforced concrete pipeline[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1704-1713.
[2] Jun SHI,Ying-ning QIU,Yi ZHOU. Direct numerical simulation of temporally evolving fractal-generated turbulence[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1606-1621.
[3] Gen LI,Tong-chun HAN,Jun-yang WU,Yu ZHANG. Coupled analysis on surface runoff and soil water movement by finite volume method[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 947-955.
[4] Meng-fan LIU,Gang-feng WU,Ke-feng ZHANG,Ping DONG. 2D non-cohesive earthen embankment breach model based on linear erosion formula[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 569-578.
[5] Shuai-ling GAO,Jun-qiang XIA,Bo-liang DONG,Mei-rong ZHOU,Jing-ming HOU. Mathematical model for urban flooding with effect of drainage of street inlets[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 590-597.
[6] Dong-jiao WANG,Chang-run CHEN,Kun LIU,Shou-qiang QIU. Investigation on parametrically excited motions of multiple degrees of freedom wave energy converter[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2496-2506.
[7] Yi-cun WANG,Jiang-kuan XING,Kun LUO,Hai-ou WANG,Jian-ren FAN. Solving combustion chemical differential equations via physics-informed neural network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2084-2092.
[8] Jun ZHANG,Yu-min CUI,Hong-zhou HE. Numerical calculation model on discrete droplet deformation in liquid-liquid system under electric field[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1391-1398.
[9] Jia-hao REN,Hai-ou WANG,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Lower-dimensional approximation models of tangential strain rate of turbulent flames[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1128-1134.
[10] Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.
[11] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[12] Chao-feng ZENG,Shuo WANG,Zhi-cheng YUAN,Xiu-li XUE. Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 338-347.
[13] Wei-guo ZHAO,Jia-jia LU,Fu-rong ZHAO. Cavitation control of centrifugal pump based on gap jet principle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1785-1794.
[14] Song-song YANG,Mei WANG,Jian-an DU,Yong GUO,Yan GEN. Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1706-1714.
[15] Ya-bo YU,Ya-dong DENG. Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 381-388.