A new type of steel frame joint with directivity, energy dissipation and time delay was proposed in order to make the steel frame structure directional when collapsing and delay the collapse time. Pseudo-static tests were carried out on the new type of joints. The failure modes, hysteretic behavior, stiffness degradation curves, skeleton curves and ductility properties of the joints were studied. The effects of material yield strength, friction coefficient and weakening depth on the new type of joints were discussed. The Abaqus finite element analysis software was used to accurately simulate the cyclic displacement loading process of the new joint, and further analyze the mechanical properties of the joint, and predict the first failure position of the component. Results showed that the failure modes of the new joint specimens were essentially identical. The flange plate with the low yield point was the first to produce a yield failure, the energy dissipation capacity of the structure was increased by selecting the flange plate with the low yield point and smearing friction materials on the surface of the specimen, and the higher the yield strength and friction coefficient of the flange plate with the low yield point, the better would be the energy dissipation capacity. Further, the ductility of the joints increased as the web weakening depth and friction coefficient increased, the lower the yield point, the greater would be the ductility.
Xiao-dong LI,Yao-yun GONG,Shun-li MA,En-liang CHEN,Zhen-yong ZHANG. Mechanical properties of steel structure joints with special functions. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 522-529.
Fig.2Test loading device diagram of novel joint under pseudo-static loading
Fig.3Field test chart of novel joints under pseudo-static test
Fig.4Specimen loading system of novel joints
Fig.5Failure mode of steel structure joints specimen
Fig.6Horizontal reciprocating load-displacement hysteresis curves of different steel structure joints specimens
Fig.7Load-displacement skeleton curves of different steel structure joints specimens
Fig.8Equivalent stiffness degradation curves of different steel structure joints specimens
试件 编号
$ {\varDelta _{\text{f}}} $/mm
$ {\varDelta _{\text{y}}} $/mm
$ \mu $
正向
负向
正向
负向
正向
负向
T1
59.51
60.52
7.85
6.36
7.58
9.52
T2
60.00
60.02
8.06
6.51
7.44
9.22
T3
60.03
60.00
8.12
6.58
7.39
9.12
T4
59.51
59.52
7.96
6.32
7.48
9.42
T5
59.21
59.82
7.66
6.31
7.73
9.48
T6
61.00
60.99
8.10
6.59
7.53
9.25
T7
60.94
60.91
8.05
6.51
7.57
9.36
T8
40.02
40.01
7.97
7.99
5.02
5.00
Tab.2Ductility coefficient of different steel structure joints specimens
Fig.9Finite element model of novel joint
Fig.10Novel joint mesh generation
[1]
丁克伟, 刘建华, 马巍, 等 新型装配式半刚性节点抗震性能试验研究[J]. 土木工程学报, 2021, 54 (4): 1- 7 DING Ke-wei, LIU Jian-hua, MA Wei, et al Experimental study on seismic performance of a new type of fabricated semi-rigid beam-to-column connection[J]. China Civil Engineering Journal, 2021, 54 (4): 1- 7
doi: 10.15951/j.tmgcxb.2021.04.001
[2]
康子恒, 王森林, 杜喜凯, 等 T形钢连接半刚性梁柱节点受力性能研究[J]. 建筑结构学报, 2020, 41 (Suppl.1): 44- 54 KANG Zi-heng, WANG Sen-lin, DU Xi-kai, et al Study on mechanical behavior of semi-rigid beam-column joints with T-section connections[J]. Journal of Building Structures, 2020, 41 (Suppl.1): 44- 54
doi: 10.14006/j.jzjgxb.2020.S1.006
[3]
谭平, 李洋, 匡珍, 等 装配式隔震结构中隔震节点抗震性能研究[J]. 土木工程学报, 2015, 48 (2): 10- 17 TAN Ping, LI Yang, KUANG Zhen, et al Seismic behavior of isolation connection in assembled seismic isolation structure[J]. China Civil Engineering Journal, 2015, 48 (2): 10- 17
[4]
夏永强, 肖南 T形钢连接梁柱半刚性节点初始转动刚度计算公式[J]. 浙江大学学报: 工学版, 2018, 52 (10): 1935- 1942 XIA Yong-qiang, XIAO Nan Initial rotational stiffness formula of semi-rigid joint with T-stub in beam-to-column connection[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (10): 1935- 1942
[5]
韩冬, 布欣, 王新武, 等 空间剖分T型钢梁柱连接角柱节点抗震试验[J]. 浙江大学学报: 工学版, 2017, 51 (2): 287- 296 HAN Dong, BU Xin, WANG Xin-wu, et al Experiment on seismic performance of spatial beam to corner column connection with T-stub[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (2): 287- 296
[6]
刘希月, 王元清, 石永久, 等 高强度钢框架梁柱节点低周疲劳断裂性能试验研究[J]. 建筑结构学报, 2018, 39 (2): 28- 36 LIU Xi-yue, WANG Yuan-qing, SHI Yong-yong, et al Experimental study on low-cycle fatigue fracture behavior of high strength steel beam-to-column connection[J]. Journal of Building Structures, 2018, 39 (2): 28- 36
[7]
TAGAWA H, NAGOYA Y, CHEN X Bolted beam-to-column connection with buckling-restrained round steel bar dampers[J]. Journal of Constructional Steel Research, 2020, 169: 106036
doi: 10.1016/j.jcsr.2020.106036
[8]
ZHANG A L, WU Y X, JIANG Z Q, et al Seismic behaviour of an earthquake-resilient prefabricated beam-column cross joint[J]. Journal of Zhejiang University-SCIENCE A: Applied Physics and Engineering, 2017, 18 (12): 927- 941
[9]
LIU X Y, WANG Y Q, XIONG J, et al Damage behavior of steel beam-to-column connections under inelastic cyclic loading[J]. Journal of Zhejiang University-SCIENCE A: Applied Physics and Engineering, 2017, 18 (11): 910- 926
[10]
杜轲, 滕楠, 燕登, 等 楼板对RC空间框架结构抗连续倒塌性能影响试验研究[J]. 土木工程学报, 2019, 52 (6): 14- 23 DU Ke, TENG Nan, YAN Deng, et al Experimental study on the effect of floor slab on the progressive collapse resistance of RC spatial frame structure[J]. China Civil Engineering Journal, 2019, 52 (6): 14- 23
doi: 10.15951/j.tmgcxb.2019.06.002
[11]
孟宝, 钟炜辉, 郝际平 基于节点刚度的钢框架梁柱子结构抗倒塌性能试验研究[J]. 工程力学, 2018, 35 (6): 88- 96 MENG Bao, ZHONG Wei-hui, HAO Ji-ping Experimental study on anti-collapse performance for beam-to-column assemblies of steel frame based on joint stiffness[J]. Engineering Mechanics, 2018, 35 (6): 88- 96
[12]
张惊宙, 李国强, 冯然, 等 考虑边柱失效位置和根数影响的钢框架结构抗倒塌性能研究[J]. 土木工程学报, 2021, 54 (8): 67- 74 ZHANG Jing-zhou, LI Guo-qiang, FENG Ran, et al Collapse resistance of steel framed-structure considering the effects of failure location and number of edge columns[J]. China Civil Engineering Journal, 2021, 54 (8): 67- 74
[13]
孙昕, 王伟, 王俊杰, 等 组合梁-方钢管柱刚接节点抗连续倒塌性能试验研究[J]. 建筑结构学报, 2020, 41 (Suppl.2): 314- 322 SUN Xin, WANG Wei, WANG Jun-jie, et al Experimental behavior of composite beam-rectangular steel tube joints under progressive collapse scenario[J]. Journal of Building Structures, 2020, 41 (Suppl.2): 314- 322
doi: 10.14006/j.jzjgxb.2020.S2.0034
[14]
谭政, 钟炜辉, 郑玉辉, 等 多层组合框架子结构抗倒塌性能研究及提升策略[J]. 建筑结构学报, 2022, 43 (6): 128- 141 TAN Zheng, ZHONG Wei-hui, ZHENG Yu-hui, et al Study on anti-collapse performance and improvement strategy of a multi-story composite sub-frame[J]. Journal of Building Structures, 2022, 43 (6): 128- 141
doi: 10.14006/j.jzjgxb.2020.0542
[15]
CIMAN L, FREDDI F, TONDINI N A retrofit method to mitigate progressive collapse in steel structures[J]. CE/Papers, 2021, 4 (2/4): 1246- 1254
[16]
KARIMIAN A, ARMAGHANI A, BEHRAVESH A Performance of low-yield strength plates in beam-column connections against progressive collapse[J]. KSCE Journal of Civil Engineering, 2019, 23: 335- 345
doi: 10.1007/s12205-018-0653-y
[17]
王艳. 钢结构新型延性节点的抗震设计理论及其应用[M]. 北京: 科学出版社, 2012.
[18]
杨翠如, 钟锡根, 刘大海 抗震墙刚度退化对高层框-墙结构地震内力的影响[J]. 土木工程学报, 1988, 21 (1): 30- 39 YANG Cui-ru, ZHONG Xi-gen, LIU Da-hai Influence on seismic internal forces of highrise frame-wall structures due to stiffness degradation of walls[J]. China Civil Engineering Journal, 1988, 21 (1): 30- 39
doi: 10.15951/j.tmgcxb.1988.01.003
[19]
许淑芳, 张弢, 索跃宁, 等 钢筋混凝土空心剪力墙刚度退化研究[J]. 西安建筑科技大学学报: 自然科学版, 2007, 39 (5): 605- 609 XU Shu-fang, ZHANG Tao, SUO Yue-ning, et al Study of stiffness degradation on reinforced concrete hollow shear wall[J]. Journal of Xi'an University of Architecture and Technology: Natural Science Edition, 2007, 39 (5): 605- 609