Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (3): 522-529    DOI: 10.3785/j.issn.1008-973X.2023.03.010
    
Mechanical properties of steel structure joints with special functions
Xiao-dong LI(),Yao-yun GONG,Shun-li MA,En-liang CHEN,Zhen-yong ZHANG
College of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Download: HTML     PDF(4376KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new type of steel frame joint with directivity, energy dissipation and time delay was proposed in order to make the steel frame structure directional when collapsing and delay the collapse time. Pseudo-static tests were carried out on the new type of joints. The failure modes, hysteretic behavior, stiffness degradation curves, skeleton curves and ductility properties of the joints were studied. The effects of material yield strength, friction coefficient and weakening depth on the new type of joints were discussed. The Abaqus finite element analysis software was used to accurately simulate the cyclic displacement loading process of the new joint, and further analyze the mechanical properties of the joint, and predict the first failure position of the component. Results showed that the failure modes of the new joint specimens were essentially identical. The flange plate with the low yield point was the first to produce a yield failure, the energy dissipation capacity of the structure was increased by selecting the flange plate with the low yield point and smearing friction materials on the surface of the specimen, and the higher the yield strength and friction coefficient of the flange plate with the low yield point, the better would be the energy dissipation capacity. Further, the ductility of the joints increased as the web weakening depth and friction coefficient increased, the lower the yield point, the greater would be the ductility.



Key wordssteel structure joint      directivity      energy dissipation      time delay      mechanical properties     
Received: 05 March 2022      Published: 31 March 2023
CLC:  TU 391  
Fund:  国家自然科学基金资助项目(51968043)
Cite this article:

Xiao-dong LI,Yao-yun GONG,Shun-li MA,En-liang CHEN,Zhen-yong ZHANG. Mechanical properties of steel structure joints with special functions. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 522-529.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.03.010     OR     https://www.zjujournals.com/eng/Y2023/V57/I3/522


具有特殊功能的钢结构节点的力学性能

为了使钢框架结构在倒塌时具有方向性并延缓倒塌时间,提出具有方向性、耗能性、延时性的新型钢框架节点. 对新型节点试件进行拟静力试验,研究节点的破坏形态、滞回性能、刚度退化曲线、骨架曲线及延性性能,探讨材料屈服强度、摩擦系数和削弱深度对新型节点的影响. 运用有限元分析软件Abaqus对新型节点的循环往复位移加载过程进行准确模拟,进一步分析节点的力学性能,预测构件被首先破坏的部位. 结果表明:新型节点试件的破坏形态基本一致,均为低屈服点翼缘板先发生屈服破坏;设置低屈服点翼缘板和在试件表面涂抹摩擦材料可以增加结构的耗能能力,低屈服点翼缘板的屈服强度和摩擦系数越大,耗能能力越好;节点的延性性能随着腹板削弱深度和摩擦系数的增加而增加,屈服点越低,延性越大.


关键词: 钢结构节点,  方向性,  耗能性,  延时性,  力学性能 
试件编号 低屈服点翼缘板 c/mm ?
T1 LY100 10 0.25
T2 LY160 10 0.25
T3 LY225 10 0.25
T4 LY160 15 0.25
T5 LY160 20 0.25
T6 LY160 10 0.35
T7 LY160 10 0.45
T8 0 0
Tab.1 Steel structure joints specimen parameters
Fig.1 Novel joint structure detail
Fig.2 Test loading device diagram of novel joint under pseudo-static loading
Fig.3 Field test chart of novel joints under pseudo-static test
Fig.4 Specimen loading system of novel joints
Fig.5 Failure mode of steel structure joints specimen
Fig.6 Horizontal reciprocating load-displacement hysteresis curves of different steel structure joints specimens
Fig.7 Load-displacement skeleton curves of different steel structure joints specimens
Fig.8 Equivalent stiffness degradation curves of different steel structure joints specimens
试件
编号
$ {\varDelta _{\text{f}}} $/mm $ {\varDelta _{\text{y}}} $/mm $ \mu $
正向 负向 正向 负向 正向 负向
T1 59.51 60.52 7.85 6.36 7.58 9.52
T2 60.00 60.02 8.06 6.51 7.44 9.22
T3 60.03 60.00 8.12 6.58 7.39 9.12
T4 59.51 59.52 7.96 6.32 7.48 9.42
T5 59.21 59.82 7.66 6.31 7.73 9.48
T6 61.00 60.99 8.10 6.59 7.53 9.25
T7 60.94 60.91 8.05 6.51 7.57 9.36
T8 40.02 40.01 7.97 7.99 5.02 5.00
Tab.2 Ductility coefficient of different steel structure joints specimens
Fig.9 Finite element model of novel joint
Fig.10 Novel joint mesh generation
[1]   丁克伟, 刘建华, 马巍, 等 新型装配式半刚性节点抗震性能试验研究[J]. 土木工程学报, 2021, 54 (4): 1- 7
DING Ke-wei, LIU Jian-hua, MA Wei, et al Experimental study on seismic performance of a new type of fabricated semi-rigid beam-to-column connection[J]. China Civil Engineering Journal, 2021, 54 (4): 1- 7
doi: 10.15951/j.tmgcxb.2021.04.001
[2]   康子恒, 王森林, 杜喜凯, 等 T形钢连接半刚性梁柱节点受力性能研究[J]. 建筑结构学报, 2020, 41 (Suppl.1): 44- 54
KANG Zi-heng, WANG Sen-lin, DU Xi-kai, et al Study on mechanical behavior of semi-rigid beam-column joints with T-section connections[J]. Journal of Building Structures, 2020, 41 (Suppl.1): 44- 54
doi: 10.14006/j.jzjgxb.2020.S1.006
[3]   谭平, 李洋, 匡珍, 等 装配式隔震结构中隔震节点抗震性能研究[J]. 土木工程学报, 2015, 48 (2): 10- 17
TAN Ping, LI Yang, KUANG Zhen, et al Seismic behavior of isolation connection in assembled seismic isolation structure[J]. China Civil Engineering Journal, 2015, 48 (2): 10- 17
[4]   夏永强, 肖南 T形钢连接梁柱半刚性节点初始转动刚度计算公式[J]. 浙江大学学报: 工学版, 2018, 52 (10): 1935- 1942
XIA Yong-qiang, XIAO Nan Initial rotational stiffness formula of semi-rigid joint with T-stub in beam-to-column connection[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (10): 1935- 1942
[5]   韩冬, 布欣, 王新武, 等 空间剖分T型钢梁柱连接角柱节点抗震试验[J]. 浙江大学学报: 工学版, 2017, 51 (2): 287- 296
HAN Dong, BU Xin, WANG Xin-wu, et al Experiment on seismic performance of spatial beam to corner column connection with T-stub[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (2): 287- 296
[6]   刘希月, 王元清, 石永久, 等 高强度钢框架梁柱节点低周疲劳断裂性能试验研究[J]. 建筑结构学报, 2018, 39 (2): 28- 36
LIU Xi-yue, WANG Yuan-qing, SHI Yong-yong, et al Experimental study on low-cycle fatigue fracture behavior of high strength steel beam-to-column connection[J]. Journal of Building Structures, 2018, 39 (2): 28- 36
[7]   TAGAWA H, NAGOYA Y, CHEN X Bolted beam-to-column connection with buckling-restrained round steel bar dampers[J]. Journal of Constructional Steel Research, 2020, 169: 106036
doi: 10.1016/j.jcsr.2020.106036
[8]   ZHANG A L, WU Y X, JIANG Z Q, et al Seismic behaviour of an earthquake-resilient prefabricated beam-column cross joint[J]. Journal of Zhejiang University-SCIENCE A: Applied Physics and Engineering, 2017, 18 (12): 927- 941
[9]   LIU X Y, WANG Y Q, XIONG J, et al Damage behavior of steel beam-to-column connections under inelastic cyclic loading[J]. Journal of Zhejiang University-SCIENCE A: Applied Physics and Engineering, 2017, 18 (11): 910- 926
[10]   杜轲, 滕楠, 燕登, 等 楼板对RC空间框架结构抗连续倒塌性能影响试验研究[J]. 土木工程学报, 2019, 52 (6): 14- 23
DU Ke, TENG Nan, YAN Deng, et al Experimental study on the effect of floor slab on the progressive collapse resistance of RC spatial frame structure[J]. China Civil Engineering Journal, 2019, 52 (6): 14- 23
doi: 10.15951/j.tmgcxb.2019.06.002
[11]   孟宝, 钟炜辉, 郝际平 基于节点刚度的钢框架梁柱子结构抗倒塌性能试验研究[J]. 工程力学, 2018, 35 (6): 88- 96
MENG Bao, ZHONG Wei-hui, HAO Ji-ping Experimental study on anti-collapse performance for beam-to-column assemblies of steel frame based on joint stiffness[J]. Engineering Mechanics, 2018, 35 (6): 88- 96
[12]   张惊宙, 李国强, 冯然, 等 考虑边柱失效位置和根数影响的钢框架结构抗倒塌性能研究[J]. 土木工程学报, 2021, 54 (8): 67- 74
ZHANG Jing-zhou, LI Guo-qiang, FENG Ran, et al Collapse resistance of steel framed-structure considering the effects of failure location and number of edge columns[J]. China Civil Engineering Journal, 2021, 54 (8): 67- 74
[13]   孙昕, 王伟, 王俊杰, 等 组合梁-方钢管柱刚接节点抗连续倒塌性能试验研究[J]. 建筑结构学报, 2020, 41 (Suppl.2): 314- 322
SUN Xin, WANG Wei, WANG Jun-jie, et al Experimental behavior of composite beam-rectangular steel tube joints under progressive collapse scenario[J]. Journal of Building Structures, 2020, 41 (Suppl.2): 314- 322
doi: 10.14006/j.jzjgxb.2020.S2.0034
[14]   谭政, 钟炜辉, 郑玉辉, 等 多层组合框架子结构抗倒塌性能研究及提升策略[J]. 建筑结构学报, 2022, 43 (6): 128- 141
TAN Zheng, ZHONG Wei-hui, ZHENG Yu-hui, et al Study on anti-collapse performance and improvement strategy of a multi-story composite sub-frame[J]. Journal of Building Structures, 2022, 43 (6): 128- 141
doi: 10.14006/j.jzjgxb.2020.0542
[15]   CIMAN L, FREDDI F, TONDINI N A retrofit method to mitigate progressive collapse in steel structures[J]. CE/Papers, 2021, 4 (2/4): 1246- 1254
[16]   KARIMIAN A, ARMAGHANI A, BEHRAVESH A Performance of low-yield strength plates in beam-column connections against progressive collapse[J]. KSCE Journal of Civil Engineering, 2019, 23: 335- 345
doi: 10.1007/s12205-018-0653-y
[17]   王艳. 钢结构新型延性节点的抗震设计理论及其应用[M]. 北京: 科学出版社, 2012.
[18]   杨翠如, 钟锡根, 刘大海 抗震墙刚度退化对高层框-墙结构地震内力的影响[J]. 土木工程学报, 1988, 21 (1): 30- 39
YANG Cui-ru, ZHONG Xi-gen, LIU Da-hai Influence on seismic internal forces of highrise frame-wall structures due to stiffness degradation of walls[J]. China Civil Engineering Journal, 1988, 21 (1): 30- 39
doi: 10.15951/j.tmgcxb.1988.01.003
[19]   许淑芳, 张弢, 索跃宁, 等 钢筋混凝土空心剪力墙刚度退化研究[J]. 西安建筑科技大学学报: 自然科学版, 2007, 39 (5): 605- 609
XU Shu-fang, ZHANG Tao, SUO Yue-ning, et al Study of stiffness degradation on reinforced concrete hollow shear wall[J]. Journal of Xi'an University of Architecture and Technology: Natural Science Edition, 2007, 39 (5): 605- 609
[1] Wei WANG,Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU. Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1407-1418.
[2] Ya-xian ZHAO,Ye-cheng MA,Zi-qiang CHENG,Xin CAO,Yong LIU,Gao-rong HAN. Micromechanical properties of electronic glass using nanoindentation technology[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 984-990.
[3] Lin-nan LI,Wei ZHANG,Yan-jie DANG,Tai-an LI. Design of low power differential multiplexing beamformer[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 571-577.
[4] Han-yun ZHOU,Shan-he HUANG. Application of broadband parametric array in sub-bottom profile measurement[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 972-977.
[5] Bo PANG,Shi-zheng ZHU,Jing-feng BAI,Xiang JI. Measurement technique of high-intensity focused ultrasound driving power based on power coupler and detector[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1630-1636.
[6] Peng WANG,Zheng-zhi DENG,Chen WANG,Xiang REN. Hydrodynamic characteristics of oscillating water column type breakwater[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2335-2341.
[7] SHAO Hui-feng, HE Yong, FU Jian-zhong. Research advance of degradable artificial bone with additive manufacturing: customization from geometric shape to property[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1035-1057.
[8] WAGN Yao-yao, GU Lin-yi, CHEN Bai, WU Hong-tao. Nonsingular terminal sliding mode control of underwater vehicle-manipulator system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 934-942.
[9] SU Hui, FENG Hua-jun, XU Zhi-hai, LI Qi, CHEN Yue-ting. Restoration method of TDI remote sensing image based onoptimization of numerical fidelity term[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 674-679.
[10] FAN Sheng-gang, ZHANG Sui-han, MENG Chang. Experimental investigation on mechanical properties of austenitic stainless steel with elevated temperature cooling[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2348-2354.
[11] ZHANG Fu-weng,WANG Li,LIU Chuan-ping. Energy transfer and dissipation in a binary granular mixture under vibration[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 571-577.
[12] LU Jin-yu, TANG Yi, SHU Gan-ping, WANG Heng-hua. Hysteretic behavior of steel plate shear wall with slits of unequal length[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1968-1975.
[13] YE Ling-yun,CHEN Bo,ZHANG Jian,SONG Kai-chen. Feedback control of high precision dynamic standard source based on ripple-free deadbeat algorithm[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1554-1558.
[14] ZHANG Chao, WANG Lei, CHEN Xing-fan, ZHAO Xin. Multiplexed double-axis fiber optic gyroscope[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2184-2187.
[15] LIU Zhi-kun, LIU Zhong, FU Xue-zhi, NING Xiao-ling. Modified variable step-size adaptive filtering and
Eckart weighted denoising algorithm
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 1014-1020.