Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (5): 984-990    DOI: 10.3785/j.issn.1008-973X.2021.05.019
    
Micromechanical properties of electronic glass using nanoindentation technology
Ya-xian ZHAO1(),Ye-cheng MA1,Zi-qiang CHENG1,Xin CAO2,Yong LIU1,*(),Gao-rong HAN1
1. School of Material Science and Engineering, State Key Laboratory of Silicon Material Science, Hangzhou 310027, China
2. Bengbu Design and Research Institute for Glass Industry Co. Ltd, Bengbu 233018, China
Download: HTML     PDF(966KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Advanced nanoindentation technology was used to record load-displacement curves of typical electronic glasses, including soda lime silicate, alkali-free boroaluminosilicate and alkali aluminosilicate glasses, in order to study the microscopic mechanical properties of different electronic glasses. Hardness and elastic modulus were calculated using the Oliver-Pharr method and elastoplastic deformation theory. The hardness of glass is mainly related to the bonding degree of glass structure. The higher the average number of non-bridging oxygen, the easier it is to densify under stress, thus the lower the hardness. The elastic modulus mainly depends on the strength of chemical bond between particles. Stronger chemical bond leads to smaller deformation and larger elastic modulus. Different trends were observed for the elastic modulus and the hardness measured by the nine-point method. Microscopic uniformity of the glass samples has been evaluated based on the intrinsic relationship between hardness, elastic modulus and energy dissipation. Results showed that the alkali-free boroaluminosilicate glass had the best mechanical properties with high recovery resistance and local energy dissipation, making it not easy to cause overall damage. Samples prepared by overflow down-draw process showed less fluctuations in the local mechanical properties and got better micromechanical uniformity compared with samples prepared by float process.



Key wordsnanoindentation technology      hardness      elastic modulus      energy dissipation      microscopic uniformity     
Received: 20 March 2020      Published: 10 June 2021
CLC:  TQ 171.71  
Fund:  “十三五”国家重点研发计划资助项目(2016YFB0303700);国家自然科学基金资助项目(U1809217,51672242);浮法玻璃新技术国家重点实验室开放课题基金资助项目
Corresponding Authors: Yong LIU     E-mail: 3130104409@zju.edu.cn;liuyong.mse@zju.edu.cn
Cite this article:

Ya-xian ZHAO,Ye-cheng MA,Zi-qiang CHENG,Xin CAO,Yong LIU,Gao-rong HAN. Micromechanical properties of electronic glass using nanoindentation technology. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 984-990.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.05.019     OR     http://www.zjujournals.com/eng/Y2021/V55/I5/984


基于纳米压痕技术的电子玻璃微观力学性能研究

为了研究不同电子玻璃的微观力学性能,采用先进的纳米压痕技术记录钠钙硅、无碱硼铝硅和碱铝硅等典型电子玻璃的载荷-位移曲线,利用Oliver-Pharr方法和经典的弹塑性变形理论,计算玻璃的硬度和弹性模量. 玻璃的硬度主要与结构的键合度相关,平均非桥氧数越高,外力作用下越容易致密化,硬度越小;弹性模量主要取决于质点间的化学键强度,化学键力越强,变形越小,弹性模量越大;九点法测得的弹性模量与硬度的变化趋势不完全相同,借助硬度-弹性模量-能量耗散之间的本征关系,评价玻璃样品的微观均匀性,其中无碱硼铝硅玻璃的恢复阻力大,局部能量耗散大,不容易引起整体破坏,力学性能最好;与浮法工艺相比,溢流下拉法制备样品的局部力学性能波动较小,微观均匀性较好.


关键词: 纳米压痕技术,  硬度,  弹性模量,  能量耗散,  微观均匀性 
电子玻璃种类 工艺 厚度/mm 编号
钠钙硅玻璃 浮法 1.10 S1
无碱硼铝硅玻璃 溢流下拉法 0.30 S2
无碱硼铝硅玻璃 浮法 0.33 S3
碱铝硅玻璃 溢流下拉法 0.40 S4
Tab.1 Type, production process and thickness of electronic glasses
Fig.1 Load-displacement curve of nanoindentation on glass surface
Fig.2 Dot matrix for nanoindentation test
Fig.3 Hardness of electronic glass samples and impression images of S4 observed under optical microscope
%
种类 编号 r
(SiO2
r
(Al2O3
r
(B2O3
r
(Na2O+K2O)
r
(CaO+MgO)
钠钙硅 S1 71.67 0.94 ? 13.24 14.15
无碱硼铝硅 S2 68.21 10.78 9.87 ? 11.14
无碱硼铝硅 S3 68.78 11.62 8.01 ? 11.59
碱铝硅 S4 64.94 10.34 0.09 15.78 8.85
Tab.2 Chemical composition of experimental glass sample
Fig.4 Degree of bonding of experimental glass samples and average number of bridging and non-bridging oxygen
Fig.5 Elastic modulus of electronic glasses
Fig.6 Elastic modulus and hardness of different electronic glasses at different test points
Fig.7 Recovery resistance of glass samples prepared by two processes
[1]   OLIVER W C, PHARR G M An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7 (6): 1564- 1583
doi: 10.1557/JMR.1992.1564
[2]   OLIVER W C, PHARR G M Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19 (1): 3- 20
doi: 10.1557/jmr.2004.19.1.3
[3]   SEBASTIANI M, JOHANNS K E, HERBERT E G, et al Measurement of fracture toughness by nanoindentation methods: recent advances and future challenges[J]. Current Opinion in Solid State and Materials Science, 2015, 19 (6): 324- 333
doi: 10.1016/j.cossms.2015.04.003
[4]   HYUN H C, RICKHEY F, LEE J H, et al Evaluation of indentation fracture toughness for brittle materials based on the cohesive zone finite element method[J]. Engineering Fracture Mechanics, 2015, 134: 304- 316
doi: 10.1016/j.engfracmech.2014.11.013
[5]   MA D, SUN L, GAO T, et al New method for extracting fracture toughness of ceramic materials by instrumented indentation test with Berkovich indenter[J]. Journal of the European Ceramic Society, 2017, 37 (6): 2537- 2545
doi: 10.1016/j.jeurceramsoc.2017.02.007
[6]   LI X, BHUSHAN B A review of nanoindentation continuous stiffness measurement technique and its applications[J]. Materials Characterization, 2002, 48: 11- 36
doi: 10.1016/S1044-5803(02)00192-4
[7]   SAHA R, NIX W D Effects of the substrate on the determination of thin film mechanical properties by nanoindentation[J]. Acta Materialia, 2002, 50: 23- 38
doi: 10.1016/S1359-6454(01)00328-7
[8]   ANDRE D, BURLET T, KORKEMEYER F, et al Investigation of the electroplastic effect using nanoindentation[J]. Materials and Design, 2019, 183: 108153
doi: 10.1016/j.matdes.2019.108153
[9]   WANG Y, ZHUANG W, YANG H, et al Determination of mechanical properties of pure zirconium processed by surface severe plastic deformation through nanoindentation[J]. Rare Metals, 2019, 38 (9): 824- 831
doi: 10.1007/s12598-019-01302-6
[10]   XU J, CORR D J, SHAH S P Nanomechanical properties of C-S-H gel/cement grain interface by using nanoindentation and modulus mapping[J]. Journal of Zhejiang University: Science A, 2015, 16 (1): 38- 46
doi: 10.1631/jzus.A1400166
[11]   杨亚鹏, 陈晓晓, 张亚, 等 硬脆材料微纳米压痕微尺度材料去除机理有限元仿真研究[J]. 工具技术, 2018, 52 (7): 45- 48
YANG Ya-peng, CHEN Xiao-xiao, ZHANG Ya, et al Finite element simulation study on micro scale materials removal mechanism micro nano indentation of hard and brittle materials[J]. Tool Engineering, 2018, 52 (7): 45- 48
doi: 10.3969/j.issn.1000-7008.2018.07.023
[12]   刘圣鑫, 王宗秀, 张林炎, 等 基于纳米压痕的页岩微观力学性质分析[J]. 实验力学, 2018, 33 (6): 957- 967
LIU Sheng-xin, WANG Zong-xiu, ZHANG Lin-yan, et al Micromechanics properties analysis of shale based on nano-indentation[J]. Journal of Experimental Mechanics, 2018, 33 (6): 957- 967
doi: 10.7520/1001-4888-17-072
[13]   ZHAO Y, DU J, QIAO X, et al Ionic self-diffusion of Na2O-Al2O3-SiO2 glasses from molecular dynamics simulations [J]. Journal of Non-Crystalline Solids, 2020, 527: 119734
doi: 10.1016/j.jnoncrysol.2019.119734
[14]   LU X, DENG L, DU J Effect of ZrO2 on the structure and properties of soda-lime silicate glasses from molecular dynamics simulations [J]. Journal of Non-Crystalline Solids, 2018, 491: 141- 150
doi: 10.1016/j.jnoncrysol.2018.04.013
[15]   DENG L, URATA S, TAKIMOTO Y, et al Structural features of sodium silicate glasses from reactive force field-based molecular dynamics simulations[J]. Journal of the American Ceramic Society, 2019, 103 (3): 1600- 1614
[16]   REN M, CHENG J Y, JACCANI S P, et al Composition-structure-property relationships in alkali aluminosilicate glasses: acombined experimental-computational approach towards designing functional glasses[J]. Journal of Non-Crystalline Solids, 2019, 505: 144- 153
doi: 10.1016/j.jnoncrysol.2018.10.053
[17]   GREAVES G N EXAFS and the structure of glass[J]. Journal of Non-Crystalline Solids, 1985, 71: 203- 217
doi: 10.1016/0022-3093(85)90289-3
[18]   BECHGAARD T K, GOEL A, YOUNGMAN R E, et al Structure and mechanical properties of compressed sodium aluminosilicate glasses: role of non-bridging oxygens[J]. Journal of Non-Crystalline Solids, 2016, 441: 49- 57
doi: 10.1016/j.jnoncrysol.2016.03.011
[19]   PHARR G M, HERBERT E G, GAO Y The indentation size effect: a critical examination of experimental observations and mechanistic interpretations[J]. Annual Review of Materials Research, 2010, 40 (1): 271- 292
doi: 10.1146/annurev-matsci-070909-104456
[20]   QIN C, YAO Z Effect of hot deformation on the mechanical properties of electron beam welded TC11/Ti2AlNb alloys [J]. Rare Metal Materials and Engineering, 2019, 48 (11): 3463- 3469
[21]   赵亚贤, 刘涌, 乔旭升, 等 电子玻璃中碱金属离子扩散行为的分子动力学研究[J]. 燕山大学学报, 2017, 41 (4): 304- 310
ZHAO Ya-xian, LIU Yong, QIAO Xu-sheng, et al Molecular dynamics simulation on diffusion behaviors of alkali metal ions in electronic glasses[J]. Journal of Yanshan University, 2017, 41 (4): 304- 310
doi: 10.3969/j.issn.1007-791X.2017.04.004
[22]   RAGOEN C, SEN S, LAMBRICHT T, et al Effect of Al2O3 content on the mechanical and interdiffusional properties of ion-exchanged Na-aluminosilicate glasses [J]. Journal of Non-Crystalline Solids, 2017, 458: 129- 136
doi: 10.1016/j.jnoncrysol.2016.12.019
[23]   JIANG L, GUO X, LI X, et al Different K+–Na+ inter-diffusion kinetics between the air side and tin side of an ion-exchanged float aluminosilicate glass [J]. Applied Surface Science, 2013, 265: 889- 894
doi: 10.1016/j.apsusc.2012.11.143
[24]   VARGHEESE K D, TANDIA A, MAURO J C Molecular dynamics simulations of ion-exchanged glass[J]. Journal of Non-Crystalline Solids, 2014, 403: 107- 112
doi: 10.1016/j.jnoncrysol.2014.07.025
[25]   SVENSON M N, THIRION L M, YOUNGMAN R E, et al Effects of thermal and pressure histories on the chemical strengthening of sodium aluminosilicate glass[J]. Frontiers in Materials, 2016, 3: 14
[26]   陈芳芳, 陈佳佳, 胡亚铃, 等 浮法玻璃拉引向和横向热膨胀系数的差异性分析[J]. 生产技术, 2018, (1): 7- 8
CHEN Fang-fang, CHEN Jia-jia, HU Ya-ling, et al Analysis of the difference in the directional and transverse thermal expansion coefficients of the float glass[J]. Production Technology, 2018, (1): 7- 8
[27]   周喆 浅析影响浮法生产线玻筋产生的因素[J]. 中国玻璃, 2011, (2): 12- 14
ZHOU Zhe Analysis on causes of glass vein generation in float glass production line[J]. China Glass, 2011, (2): 12- 14
[28]   刘磊, 孙亚明, 王琰, 等 玻璃均匀性的影响因素[J]. 玻璃, 2018, (2): 21- 25
LIU Lei, SUN Ya-ming, WANG Yan, et al Influencing factors of glass uniformity[J]. Glass, 2018, (2): 21- 25
doi: 10.3969/j.issn.1003-1987.2018.02.006
[29]   曹欣, 王萍萍, 石丽芬, 等 超薄电子信息玻璃光学均匀性的检测方法[J]. 材料导报, 2018, 32: 89- 91
CAO Xin, WANG Ping-ping, SHI Li-fen, et al Methods for measuring the optical homogeneity of ultra-thin glass used in electronic information[J]. Materials Reports, 2018, 32: 89- 91
[1] Zhe-he YAO,Cao-qi ZHANG,Qi-wei SONG,Xi-jiang LU,Jian-qiang KONG,Jian-hua YAO. Ultrasonic assisted laser repair of V-grooves in nickel-based superalloy[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 887-895.
[2] Xin-shan ZHUANG,Han-wen ZHAO,Jun-xiang WANG,Yong-jie HUANG. Experimental study of dynamic elastic modulus and damping ratio of expansive soil in Hefei[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 759-766.
[3] Peng WANG,Zheng-zhi DENG,Chen WANG,Xiang REN. Hydrodynamic characteristics of oscillating water column type breakwater[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2335-2341.
[4] ZHANG Fu-weng,WANG Li,LIU Chuan-ping. Energy transfer and dissipation in a binary granular mixture under vibration[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 571-577.
[5] LU Jin-yu, TANG Yi, SHU Gan-ping, WANG Heng-hua. Hysteretic behavior of steel plate shear wall with slits of unequal length[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1968-1975.
[6] CHEN Xiao-guang, ZHENG Ping. Bed energy dissipation rate of super-high-rate anaerobic bioreactor[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(2): 358-363.