Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (5): 976-983    DOI: 10.3785/j.issn.1008-973X.2021.05.018
    
Pyrolysis and product analysis of lignin monomer model compounds
Hua-mei YANG(),Jing LI,Xi-hua DU
School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
Download: HTML     PDF(1252KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Phenol, catechol, guaiacol and syringol, as lignin monomer model compounds, were pyrolyzed in a two-stage tubular reactor, and pyrolysis products were quantified by on-line gas chromatography (GCs). Inorganic gases (IGs), C1~C5 hydrocarbons (C1~C5 LHs), non-aryl oxygen-containing compound, phenols and aromatic hydrocarbon were quantified by GC. The purpose is to determine the effect of hydroxyl and methoxy on the ring-opening reaction of aromatic ring and product distribution during lignin pyrolysis process. Results show that hydroxyl and methoxy can improve the model compound conversion rate, and the existence of hydroxyl and methoxy affects the competition of aryl ring opening reaction, aryl substitution reaction and rearrangement reaction, leading to the obvious products distribution differences in the model compounds pyrolysis. The main products are formed from the ring-opening reaction, including IGs (mass fraction of 27.29%~33.56%) and C1~C5 LHs (20.46%~39.51%). The CO yield (23.82%~29.18%) is improved by hydroxyl, and reduced by methoxy. Methoxy enhances the CO2 formation with its yield in 0.19%~9.61%. Hydroxyl and methoxy reduce the mass selectivity of C1~ C5 hydrocarbon, but promote the formation of alkyl benzene, macromolecular compounds and coke.



Key wordslignin      monomer model compound      pyrolysis      ring-opening reaction      C1~C5 hydrocarbons     
Received: 29 April 2020      Published: 10 June 2021
CLC:  TK 6  
Fund:  国家自然科学基金青年基金资助项目(21703194);江苏省自然科学基金资助项目(BK20190156);江苏省高校自然科学研究基金资助项目(18KJB480008);徐州市应用基础研究计划资助项目(KC19048)
Cite this article:

Hua-mei YANG,Jing LI,Xi-hua DU. Pyrolysis and product analysis of lignin monomer model compounds. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 976-983.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.05.018     OR     http://www.zjujournals.com/eng/Y2021/V55/I5/976


木质素单体模化物的热解与产物分析

采用苯酚、邻苯二酚、愈创木酚和紫丁香酚为木质素单体模化物,利用两段裂解反应器-在线气相色谱仪(GCs)进行热解实验和产物分析,采用多色谱柱对无机气体(IGs)、C1~C5烃(C1~C5 LHs)、非芳基含氧化合物、酚和芳烃进行定量分析,以确定羟基和甲氧基对木质素热解过程中开环反应及产物分布的影响. 结果显示:羟基和甲氧基可以提高模化物的转化率,且羟基和甲氧基的存在影响芳基开环反应、芳基取代反应和重排反应间的竞争关系,使热解产物分布存在明显差异. 4种模化物热解产物主要是芳环的开环反应产物,包括IGs(质量分数为27.29%~33.56%)和C1~C5烃(20.46%~39.51%). 一氧化碳产率(23.82%~29.18%)随羟基数增加而升高,随甲氧基数增加而降低;二氧化碳产率(0.19%~9.61%)随甲氧基数增加而升高. 羟基和甲氧基的存在降低了C1~C5烃的质量选择性,促进了烷基苯、大分子化合物和焦炭的形成.


关键词: 木质素,  单体模化物,  热解,  开环反应,  C1~C5烃 
Fig.1 Schematic diagram of two stage tubular reactor and online gas chromatograph
设备 色谱柱 检测器 条件设置 检测产物
岛津
GC-2014
Gaskuropack 54
长度:4 m
(Packed column,GL Sciences)
FID/TCD 进样口:200 ℃
检测器:220 ℃
TCD 电流:110 mA
色谱柱温度:40 ℃保持10 min,以5 ℃/min升温到200 ℃,并保持30 min
FID:甲烷、乙烷、乙烯、乙炔、丙烷、丙烯、丙炔、苯、甲醇、乙醇
TCD:一氧化碳(CO)、二氧化碳(CO2)、水(H2O)
岛津
GC-2014
VZN-1
长度:4 m
(Packed column,Alltech)
TCD 进样口:60 ℃
检测器:60 ℃
TCD 电流:110 mA
色谱柱温度:恒温40 ℃
乙炔、丙二烯、氢气
岛津
GC-2010
PoraBOND
长度:25 m(0.25 mm i.d.)
(Capillary column,Varian)
FID 进样口:345 ℃
检测器:300 ℃
色谱柱温度:40 ℃保持10 min,以5 ℃/min升温到300 ℃,并保持30 min
甲烷、乙烷、丁烷、1-丁烯、2-丁烯、1,3-丁二烯、1-丁烯-3-炔、环戊二烯、1,4-戊二烯、1,2-戊二烯、己二烯、2-呋喃甲醛、呋喃、丙酮、乙酸、乙醛、苯酚、苯、甲苯、苯乙烯、乙基苯、萘、蒽、菲
岛津
GC-2010
TC-1701
长度:60 m(0.25 mm i.d.)(capillary column,GL Sciences)
FID 进样口:345 ℃
检测器:300 ℃
色谱柱温度:40 ℃保持10 min,以5 ℃/min升温到300 ℃,并保持30 min
苯、二甲基苯、茚、萘、甲基萘、苯酚、甲基苯酚、愈创木酚、紫丁香酚、邻苯二酚
Tab.1 Online GC condition setting and detected products
Fig.2 Mass selectivity of product groups obtained from lignin model compounds pyrolysis at 750 ℃
Fig.3 Mass selectivity of phenols formed from lignin model compounds pyrolysis
Fig.4 Mass selectivity of CO and CO2 formed from lignin model compounds pyrolysis
Fig.5 Mass selectivity of C1~C5 LHs formed from lignin model compounds pyrolysis
Fig.6 Mass selectivity of LOCs formed from lignin model compounds pyrolysis
Fig.7 Mass selectivity of AHs formed from lignin model compounds pyrolysis
[1]   SAHA A, BASAK B B Scope of value addition and utilization of residual biomass from medicinal and aromatic plants[J]. Industrial Crops and Products, 2020, 145: 111979
doi: 10.1016/j.indcrop.2019.111979
[2]   KUMAR R, STREZOV V, WELDEKIDAN H, et al Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels[J]. Renewable and Sustainable Energy Reviews, 2020, 123: 109763
doi: 10.1016/j.rser.2020.109763
[3]   JEGERS H E, KLEIN M T Primary and secondary lignin pyrolysis reaction pathways[J]. Journal of Industrial and Engineering Chemistry, 1985, 24: 173- 183
[4]   杨义. 生物质催化热解和定向调控制取高品位液体燃料的研究[D]. 杭州: 浙江大学, 2019.
YANG Yi. Research on catalytic pyrolysis of biomass to advanced liquid fuel[D]. Hangzhou: Zhejiang University, 2019.
[5]   HUANG Y, LIU S, ZHANG J, et al Volatile-char interactions during biomass pyrolysis: cleavage of C?C bond in a β-5 lignin model dimer by amino-modified graphitized carbon nanotube[J]. Bioresource Technology, 2020, 307: 123192
[6]   JIANG G Z, NOWAKOWSKI D J, BRIDGWATER A V Effect of the temperature on the composition of lignin pyrolysis products[J]. Energy and Fuels, 2010, 24: 4470- 4475
doi: 10.1021/ef100363c
[7]   ZHANG M, RESENDE F L P, MOUTSOGLOU A, et al Pyrolysis of lignin extracted from prairie cordgrass, aspen, and Kraft lignin by Py-GC/MS and TGA/FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2012, 98: 65- 71
doi: 10.1016/j.jaap.2012.05.009
[8]   衣雪. 生物质热解气相产物析出特性及本征动力学研究[D]. 吉林: 东北电力大学, 2019.
YI Xue. Study on precipitation characteristics and intrinsic kinetics of biomass pyrolysis gas products[D]. Jilin: Northeast Electric Power University, 2019.
[9]   HUANG Y, GAO Y X, ZHOU H, et al Pyrolysis of palm kernel shell with internal recycling of heavy oil[J]. Bioresource Technology, 2019, 272: 77- 82
doi: 10.1016/j.biortech.2018.10.006
[10]   ZHOU S, GARCIA-PEREZ M, PECHA B, et al Secondary vapor phase reactions of lignin-derived oligomers obtained by fast pyrolysis of pine wood[J]. Energy and Fuel, 2013, 27: 1428- 1438
doi: 10.1021/ef3019832
[11]   RANZI E, CUOCI A, FARAVELLI T, et al Chemical kinetics of biomass pyrolysis[J]. Energy and Fuel, 2008, 22: 4292- 4300
doi: 10.1021/ef800551t
[12]   FARAVELLI T, FRASSOLDATI A, MIGLIAVACCA G, et al Detailed kinetic modeling of the thermal degradation of lignins[J]. Biomass and Bioenergy, 2010, 34: 290- 301
doi: 10.1016/j.biombioe.2009.10.018
[13]   YANG H M, APPARIA S, KUDO S, et al Detailed chemical kinetic modeling of vapor-phase reactions of volatiles derived from fast pyrolysis of lignin[J]. Industrial and Engineering Chemistry Research, 2015, 54 (27): 6855- 6864
doi: 10.1021/acs.iecr.5b01289
[14]   XU Z F, LIN M C Ab initio kinetics for the unimolecular reaction C6H5OH $ \xrightarrow[{\;\;\;\;\;\;\;\;}]{} $ CO+C5H6[J]. Journal of Physical Chemistry A, 2006, 110: 1672- 1677
doi: 10.1021/jp055241d
[15]   ALTARAWNEH M, DLUGOGORSKI B Z, KENNEDY E M, et al Thermochemical properties and decomposition pathways of three isomeric semiquinone radicals[J]. Journal of Physical Chemistry A, 2010, 114: 1098- 1108
doi: 10.1021/jp9091706
[16]   KHACHATRYAN L, ASATRYAN R, MCFERRIN C, et al Radicals from the gas-phase pyrolysis of catechol. 2. comparison of the pyrolysis of catechol and hydroquinone[J]. Journal of Physical Chemistry A, 2010, 114: 10110- 10116
doi: 10.1021/jp1054588
[17]   ALTARAWNEH M, DLUGOGORSKI Z, KENNEDY E M, et al Theoretical study of unimolecular decomposition of catechol[J]. Journal of Physical Chemistry A, 2010, 114: 1060- 1067
doi: 10.1021/jp909025s
[18]   KHACHATRYAN L, ADOUNKPE J, ASATRYAN R, et al Radicals from the gas-phase pyrolysis of catechol: 1. o-semiquinone and ipso-catechol radicals[J]. Journal of Physical Chemistry A, 2010, 114: 2306- 2312
doi: 10.1021/jp908243q
[19]   CUSTODIS V B F, HEMBERGER P, MA Z Q, et al Mechanism of fast pyrolysis of lignin: studying model compounds[J]. Journal of Physical Chemistry B, 2014, 118: 8524- 8531
doi: 10.1021/jp5036579
[20]   ROBICHAUD D J, SCHEER A M, MUKARAKATE C, et al Unimolecular thermal decomposition of dimethoxy benzenes[J]. Journal of Physical Chemistry A, 2014, 140 (23): 234302
doi: 10.1063/1.4879615
[21]   LIU C, ZHANG Y Y, HUANG X L Study of guaiacol pyrolysis mechanism based on density function theory[J]. Fuel Processing Technology, 2014, 123: 159- 165
doi: 10.1016/j.fuproc.2014.01.002
[22]   SCHEER A M, MUKARAKATE C, ROBICHAUD D J, et al Unimolecular thermal decomposition of phenol and d(5)-phenol: direct observation of cyclopentadiene formation via cyclohexadienone[J]. Journal of Physical Chemistry A, 2012, 136 (4): 44309
doi: 10.1063/1.3675902
[23]   YANG H M, FURUTANI Y, KUDO S, et al Experimental investigation of thermal decomposition of dihydroxybenzene isomers: catechol, hydroquinone, and resorcinol[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 321- 329
doi: 10.1016/j.jaap.2016.05.019
[24]   LEDESMA E B, HOANG J N, NGUYEN Q, et al Unimolecular decomposition pathway for the vapor-phase cracking of eugenol, a biomass tar compound[J]. Energy and Fuel, 2013, 27: 6839- 6846
doi: 10.1021/ef401760c
[25]   ASMADI M, KAWAMOTO H, SAKA S Thermal reactivities of catechols/pyrogallols and cresols/xylenols as lignin pyrolysis intermediates[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92: 76- 87
doi: 10.1016/j.jaap.2011.04.012
[26]   ASMADI M, KAWAMOTO H, SAKA S Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92: 88- 98
doi: 10.1016/j.jaap.2011.04.011
[27]   CHU S, SUBRAHMANYAM A V, HUBER G W The pyrolysis chemistry of a beta-O-4 type oligomeric lignin model compound[J]. Green Chemistry, 2013, 15: 125- 136
doi: 10.1039/C2GC36332A
[28]   BESTE A, BUCHANAN A C Role of carbon-carbon phenyl migration in the pyrolysis mechanism of beta-O-4 lignin model compounds: phenethyl phenyl ether and alpha-hydroxy phenethyl phenyl ether[J]. Journal of Physical Chemistry A, 2012, 116: 12242- 12248
doi: 10.1021/jp3104694
[29]   NORINAGA K, DEUTSCHMANN O Detailed kinetic modeling of gas-phase reactions in the chemical vapor deposition of carbon from light hydrocarbons[J]. Industrial and Engineering Chemistry Research, 2007, 46: 3547- 3557
doi: 10.1021/ie061207p
[30]   NORINAGA K, DEUTSCHMANN O, SAEGUSA N, et al Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86: 148- 160
doi: 10.1016/j.jaap.2009.05.001
[31]   NOWAKOWSKA M, HERBINET O, DUFOUR A, et al Detailed kinetic study of anisole pyrolysis and oxidation to understand tar formation during biomass combustion and gasification[J]. Combustion and Flame, 2014, 161: 1474- 1488
doi: 10.1016/j.combustflame.2013.11.024
[1] Kai ZHU,Yun-he WANG,Xue-wei QIN,Ya-dong HUANG,Qiang WANG,Ke WU. Effect of heating rate on asphalt combustion and gaseous products release characteristics[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1805-1811.
[2] Shi-quan SHAN,Zhi-jun ZHOU,Jian-ping KUANG,Yu ZHANG,Ke-fa CEN. Lignite pyrolysis and oxy-fuel combustion characteristics under N2 and CO2 atmospheres[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1826-1834.
[3] Xiao-jie LI,Jian-meng CEN,Zhi-xiang XIA,Meng-xiang FANG,Tao WANG,Qin-hui WANG,Zhong-yang LUO. Pressurized pyrolysis characteristics of pine sawdust and coal[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1298-1305.
[4] LIU Jia-jia, CEN Jian-meng, FANG Meng-xiang, CHEN Quan-lin. Direct Current discharge characteristics under different gas compositions at high temperature[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 971-979.
[5] CHEN Ling hong, CHEN Xiang, WU Jian, WU Yan yan. Quantitative analysis of gaseous products evolved by coal combustion using TGFTIRMS technique[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 961-969.
[6] NI Ming jiang, ZHAO Le, FANG Meng xiang, LI Min, LI Chao,WANG Qin hui, LUO Zhong yang. Influence of catalyst on coal pyrolysis during CH4 atmosphere[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 320-326.
[7] SONG Zu wei, ZHONG Zhao ping, ZHANG Bo, Lv Zi ting, DING Kuan. Experimental study on catalytic co pyrolysis of corn stalk and polypropylene[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 333-340.
[8] SUN Qiang, ZHANG Yan wei, LI Qian, WANG Zhi hua, GE Li chao, ZHOU Zhi jun, CHEN Ke fa. Physical and chemical characteristics and gasification reactivity of lignite fast pyrolysis char[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2045-2051.
[9] WANG Gang, ZHENG Hai feng, YIN Hong, YUAN Shen feng, CHEN Zhi rong. Pyrolysis of 1-chloro-1,1 difluoroethane to vinylidene fluoride[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1812-1816.
[10] PAN Zhi-juan, HUANG Qun-xing, Moussa-Mallaye Alhadj-Mallah, WANG Jun, CHI Yong, YAN Jian-hua.
Effect of active carbon on microwave pyrolysis characteristics of petroleum sludge
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1166-1172.
[11] MA Jian, XIE Yang, LUO Qi-yuan, XU Cang-su. Performance of diesel engine running on diesel fuel and its blends with refined biomass fast pyrolysis bio-oil[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 632-637.
[12] ZHOU Hui-long, XIAO Gang,WU Rong-bing, HUANG Lei,NI Ming-jiang, GAO Xiang, CEN Ke-fa. Influence of temperature on the structure of lignin conductive charcoal graphitization[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 2066-2071.
[13] DING Kuan, ZHONG Zhao-ping, ZHANG Bo, LIU Zhi-chao. Catalytic pyrolysis of scrap tire to produce valuable liquid products using purified attapulgite[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 2053-2060.
[14] WU Rong-bing, XIAO Gang, CHEN Dong, ZHOU Hui-long, NI Ming-jiang, GAO Xiang, CEN Ke-fa.
Characteristics of electrically conductive charcoal prepared by high temperature carbonization of lignin
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1752-1757.
[15] LI Yan-ji,JIANG Lu,ZOU Ke-wei,ZHAO Ning,LI Yu-long. Simulation and experimental of refuse derived fuel pyrolysis
 based on aspen plus
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1637-1643.