Mechanical and Energy |
|
|
|
|
Pressurized pyrolysis characteristics of pine sawdust and coal |
Xiao-jie LI( ),Jian-meng CEN,Zhi-xiang XIA,Meng-xiang FANG*( ),Tao WANG,Qin-hui WANG,Zhong-yang LUO |
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract The pressurized individual pyrolysis and co-pyrolysis characteristics of pine sawdust and Xinjiang Bernstein bituminous were analyzed. Pyrolysis experiments were conducted in pressurized thermogravimetric analyzer (PTGA) under 0.1-2.0 MPa. Pyrolysis weight loss curves were drawn according to samples pyrolysis weight loss, and weight loss rate and pyrolysis kinetics of curves were examined. Results show that increased pressure depresses the release of volatiles and increases apparent activation energy of the main pyrolysis stage by 56%-85%. The process of co-pyrolysis is not the accumulation of individual pyrolysis, but is affected by inhibition or acceleration effect of synergistic reaction. The experimental weight loss of co-pyrolysis increases 8%-23% in pressurized condition while decreases 6.7% in atmospheric condition compared to the calculated results. The apparent activation energy of co-pyrolysis in both atmospheric and pressurized condition is lower than that of individual pyrolysis during the main pyrolysis stages.
|
Received: 24 August 2018
Published: 25 June 2019
|
|
Corresponding Authors:
Meng-xiang FANG
E-mail: Leejie@zju.edu.cn;mxfang@zju.edu.cn
|
松木屑与煤加压热解特性
研究松木屑和新疆博斯坦煤的加压单独热解及共热解特性,热解实验在加压热重分析仪上开展,压力为0.1~2.0 MPa. 通过样品热解失重情况绘制热解失重曲线,对曲线进行失重速率分析和热解动力学分析. 结果发现,热解压力升高会抑制样品热解挥发分的析出,使样品主要热解阶段的表观活化能增大56%~85%;松木屑与煤共热解过程不是两者单独热解过程的简单叠加,而是两者协同反应相互促进或抑制的结果,松木屑与煤共热解失重相较计算值在加压条件下提高了8%~23%,在常压条件下降低了6.7%,但不管是常压还是加压共热解,共热解主要热解阶段的表观活化能均较松木屑和煤单独热解降低.
关键词:
松木屑,
博斯坦煤,
共热解,
加压热解,
动力学
|
|
[1] |
KAJITANI S, ZHANG Y, UMEMOTO S, et al Co-gasification reactivity of coal and woody biomass in high-temperature gasification[J]. Energy and Fuels, 2010, 24 (1): 145- 151
doi: 10.1021/ef900526h
|
|
|
[2] |
吴创之, 阴秀丽, 刘华财, 等 生物质能分布式利用发展趋势分析[J]. 中国科学院院刊, 2016, (02): 191- 198 WU Chuang-zhi, YIN Xiu-li, LIU Hua-cai, et al Perspective on development of distributed bioenergy utilization[J]. Bulletin of Chinese Academy of Sciences, 2016, (02): 191- 198
|
|
|
[3] |
谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002: 270-281.
|
|
|
[4] |
CHEN Z, GAO S, XU G Simultaneous production of CH4-rich syngas and high-quality tar from lignite by the coupling of noncatalytic/catalytic pyrolysis and gasification in a pressurized integrated fluidized bed [J]. Applied Energy, 2017, 208: 1527- 1537
doi: 10.1016/j.apenergy.2017.08.227
|
|
|
[5] |
窦元元, 钟文琪, 周冠文, 等 煤加压低温热解制取焦油和煤气特性[J]. 东南大学学报: 自然科学版, 2018, 48 (01): 85- 91 DOU Yuan-yuan, ZHONG Wen-qi, ZHOU Guan-wen, et al Characteristics of gas and oil production in low temperature coal pressurized pyrolysis[J]. Journal of Southeast University: Nature Science Edition, 2018, 48 (01): 85- 91
|
|
|
[6] |
COLLOT A G, ZHUO Y, DUGWELL D R, et al Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed-bed and fluidised bed reactors[J]. Fuel, 1999, 78 (6): 667- 679
doi: 10.1016/S0016-2361(98)00202-6
|
|
|
[7] |
ABOYADE A O, CARRIER M, MEYER E L, et al Slow and pressurized co-pyrolysis of coal and agricultural residues[J]. Energy Conversion and Management, 2013, 65 (SI): 198- 207
|
|
|
[8] |
高晋生. 煤的热解、炼焦和煤焦油加工[M]. 北京: 化学工业出版社, 2010.
|
|
|
[9] |
肖军, 沈来宏, 王泽明, 等 生物质加压热重分析研究[J]. 燃烧科学与技术, 2005, (05): 31- 36 XIAO Jun, SHEN Lai-hong, WANG Ze-ming, et al Pressurized thermogravimetric analysis of pyrolysis of biomass[J]. Journal of Combustion Science and Technology, 2005, (05): 31- 36
|
|
|
[10] |
舒新前. 煤催化热解制氢技术[M]. 北京: 科学出版社, 2011.
|
|
|
[11] |
王贤华, 鞠付栋, 杨海平, 等 神府煤加压热解特性及热解动力学分析[J]. 中国电机工程学报, 2011, 31 (11): 40- 44 WANG Xian-hua, JU Fu-dong, YANG Hai-ping, et al Kinetics and properties analysis of Shenfu coal pressurized pyrolysis[J]. Proceedings of the CSEE, 2011, 31 (11): 40- 44
|
|
|
[12] |
WANG J, YAN Q, ZHAO J, et al Fast co-pyrolysis of coal and biomass in a fluidized-bed reactor[J]. Journal of Thermal Analysis and Calorimetry, 2014, 118 (3): 1663- 1673
doi: 10.1007/s10973-014-4043-5
|
|
|
[13] |
PARK D K, KIM S D, LEE S H, et al Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor[J]. Bioresource Technology, 2010, 101 (15): 6151- 6156
doi: 10.1016/j.biortech.2010.02.087
|
|
|
[14] |
DARMSTADT H, GARCIA-PEREZ M, CHAALA A, et al Co-pyrolysis under vacuum of sugar cane bagasse and petroleum residue: properties of the char and activated char products[J]. Carbon, 2001, 39 (6): 815- 825
doi: 10.1016/S0008-6223(00)00204-9
|
|
|
[15] |
冉二君, 刘梅英, 牛智有 4种生物质秸秆的热解特性及其动力学分析[J]. 华中农业大学学报, 2015, 34 (05): 132- 137 RAN Er-jun, LIU Mei-ying, NIU Zhi-you Pyrolysis characteristics and kinetics analysis of four kinds of biomass straw[J]. Journal of Huazhong Agricultural University, 2015, 34 (05): 132- 137
|
|
|
[16] |
杨景标, 张彦文, 蔡宁生 煤热解动力学的单一反应模型和分布活化能模型比较[J]. 热能动力工程, 2010, 25 (03): 301- 305 YANG Jing-biao, ZHANG Yan-wen, CAI Ning-sheng A comparison of a single reaction model with a distributed activation energy on coal pyrolysis kinetics[J]. Journal of Engineering for Thermal Energy and Power, 2010, 25 (03): 301- 305
|
|
|
[17] |
MOGHTADERI B, MEESRI C, WALL T F Pyrolytic characteristics of blended coal and woody biomass[J]. Fuel, 2004, 83 (6): 745- 750
doi: 10.1016/j.fuel.2003.05.003
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|