Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (4): 674-679    DOI: 10.3785/j.issn.1008-973X.2018.04.009
Automatic Technology     
Restoration method of TDI remote sensing image based onoptimization of numerical fidelity term
SU Hui, FENG Hua-jun, XU Zhi-hai, LI Qi, CHEN Yue-ting
State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
Download:   PDF(4063KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A restoration method was proposed based on the optimization of numerical fidelity term in order to recover the time delay integration (TDI)-charge-coupled device (CCD) remote sensing image with vibration blur. The blur kernel was constructed line by line according to the flutter information of the imaging platform due to the spatial variation of the point spread function (PSF) of the TDI degraded images. A new deblurring algorithm for remote sensing images was presented to restore blurred images line by line by combining L1-norm regularization and optimization in numerical fidelity. The numerical fidelity term was extended to the second order in order to better recover image details in the process of constructing the image deblurring model based on maximum a posteriori probability (MAP). The proposed algorithm obtained sharper deblurring results compared with traditional Richardson-Lucy (RL) algorithm and the total variational method. Image structural similarity index measurement (SSIM) in different integral series and vibration frequencies showed the universality of the new algorithm.



Received: 17 January 2017     
CLC:  TP751  
Cite this article:

SU Hui, FENG Hua-jun, XU Zhi-hai, LI Qi, CHEN Yue-ting. Restoration method of TDI remote sensing image based onoptimization of numerical fidelity term. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 674-679.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.04.009     OR     http://www.zjujournals.com/eng/Y2018/V52/I4/674


基于数值保真项优化的TDI遥感图像复原方法

提出基于数值保真项优化的时间延迟积分电荷耦合元件(TDI-CCD)振动模糊遥感图像复原方法.针对时间延迟积分(TDI)退化图像点扩散函数(PSF)的空间变化性,根据成像平台颤振信息逐行构建模糊核.通过结合L1正则化和数值保真项优化,提出新的遥感图像去模糊方法,实现对TDI颤振图像的逐行复原.在基于最大后验概率(MAP)构建图像去模糊模型的过程中,将数值保真项扩展到二阶,以更好地保留图像细节.与传统的Richardson-Lucy(RL)算法、全变分方法相比,提出的算法去模糊效果明显.分析在不同积分级数和颤振频率下采用该算法复原后的图像的ssim,该算法体现出很好的普适性.

[1] 张媛. 星载TDICCD相机侧摆成像像移速度建模与分析[D]. 哈尔滨:哈尔滨工业大学,2013:7. ZHANG Yuan. Modeling and analysis of image motion velocity for satellite borne TDICCD camera in roll attitude[D]. Harbin:Harbin Institute of Technology, 2013:7.
[2] 王凌,徐之海,冯华君,等.线阵推扫式CCD亚像元成像的列向动态调制传递函数[J].浙江大学学报:工学版,2008, 42(2):317-320. WANG Ling, XU Zhi-hai, FENG Hua-jun, et al. Transverse dynamic modulation transfer function of subpixel push-scanning imaging by linear CCD[J]. Journal of Zhejiang University:Engineering Science, 2008, 42(2):317-320.
[3] WITTING M, HOLTS K, TUNBRIDGE D E L, et al. In-orbit measurements of microaccelerations of ESA's communication satellite OLYMPUS[C]//Free-Space Laser Communication Technologies Ⅱ. Los Angeles:SPIE, 1990, 1218:205-215.
[4] TIMONER S J, FREEMAN D M. Multi-image gradient based algorithms for motion estimation[J]. Optical Engineering, 2001, 40(9):2003-2016.
[5] WU Jia-gu, ZHENG Zhen-zhen, FENG Hua-jun, et al. Restoration of TDI camera images with motion distortion and blur[J]. Optics and Laser Technology, 2010, 42(8):1198-1203.
[6] 冯华君,邓勤,郑珍珍,等.卫星颤振光学成像仿真模型分析[J]. 光电工程,2013, 40(2):1-7. FENG Hua-jun, DENG Qin, ZHENG Zhen-zhen, et al. Analysis of the simulation model based on remote sensing imaging under vibration[J]. Opto-Electronic Engineering, 2013, 40(2):1-7.
[7] 孙韬,龙辉,赵冬,等.基于五谱段合一多光谱相机影像的卫星颤振检测和补偿[J].光学学报,2014, 34(7):0728005. SUN Tao, LONG Hui, ZHAO Dong, et al. Detection and compensation of satellite flutter based on image from multispectral camera with five spectral combinations[J]. Acta Optica Sinica, 2014, 34(7):0728005.
[8] 葛苹,王密,潘俊,等. 高分辨率TDI-CCD成像数据的自适应MTF图像复原处理研究[J]. 国土资源遥感,2010, 22(4):23-28. GE Ping, WANG Mi, PAN Jun, et al. A study of adaptive MTF image restoration of high resolution TDI-CCD image data[J]. Remote Sensing for Land and Resources, 2010, 22(4):23-28.
[9] SUN Xuan, ZHANG Wei, ZHI Xi-yang. Effects of vibration measurement error on remote sensing image restoration[C]//International Symposium on Optoelectronic Technology and Application. Beijing:SPIE, 2016:10154.
[10] YU Hang, QIAN Xin-yuan, GUO Meng-han, et al. A time delay integration CMOS image sensor with online deblurring algorithm[C]//International Symposium on VLSI Design, Automation and Test.[S. l.]:IEEE, 2015:1544-1554.
[11] SHAN Qi, JIA Jia-ya, AGARWALA A. High-quality motion deblurring from a single image[J]. ACM Transactions on Graphics, 2008, 27(3):1-10.
[12] ZORAN D, WEISS Y. From learning models of natural image patches to whole image restoration[J]. International Comference on Computer Vision, 2011, 6126278:479-486.
[13] WATANABE M, KYOCHI S, ONO S. Gradient-domain image decomposition for image recovery[C]//IEEE International Conference on Image Processing.[S. l.]:IEEE, 2015:4768-4772.
[14] XU Li, JIA Jia-ya. Two-phase Kernel estimation for robust motion deblurring[C]//European Conference on Computer Vision. Heraklion:[s. n.], 2010:157-170.
[15] CHEN J, YUAN L, TANG C K, et al. Robust dual motion deblurring[C]//IEEE Conference on Computer Vision and Pattern Recognition.[S. l.]:IEEE, 2008:1-8.
[16] WANG Y, YANG J, YIN W, et al. A new alternating minimization algorithm for total variation image reconstruction[J]. SIAM Journal on Imaging Sciences 1, 2008, 1(3):248-272.

[1] XU Yue, XU Zhi-hai, FENG Hua-jun, LI Qi, CHEN Yue-ting, XU Yi, ZHAO Hong-bo. Registration and stitching optimization for two-scene-type remote sensing image[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 107-114.
[2] FU Yong-yong, WANG Xu-hang, DENG Jin-song, YE Zi-ran, ZHOU Meng-meng, YOU Shu-cheng, GUAN Tao. Extraction of water information in complex water-net plain with Chinese GF-2 remotely sensed images[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(12): 2474-2480.
[3] ZHAO Liao-ying, CHEN Xiao-fen, LI Xiao-run. Hyperspectral change detection based on change vector analysis and spectral unmixing[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 1912-1919.