Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (4): 680-686    DOI: 10.3785/j.issn.1008-973X.2018.04.010
Automatic Technology     
Target threat assessment using grey wolf optimization and wavelet neural network
FU Wei-yang1, LIU Yi-an1, XUE Song2
1. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China;
2. Electronic Department, The Seventh Research Institute of China Shipbuilding Industry Corporation, Beijing 100192, China
Download:   PDF(1214KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Opposition-based learning grey wolf optimization (OGWO) and wavelet neural network model (OGWO-WNN) was established in order to improve the air targets threat estimation accuracy, and the algorithm based on the model was proposed. Opposition-based learning (OBL) was adopted to optimize grey wolf optimization (GWO) algorithm, and OGWO was employed to simultaneously optimize the weights and translation and scalability factors in WNN. Target threat database was adopted to test the performance of OGWO-WNN in target threat prediction. The experimental results show that the weights and translation and scalability factors in WNN can be better optimized. The air target threat assessment model has higher prediction precision and better generalization ability, and can accurately and effectively complete target threat estimation.



Received: 27 July 2017     
CLC:  TP391  
Cite this article:

FU Wei-yang, LIU Yi-an, XUE Song. Target threat assessment using grey wolf optimization and wavelet neural network. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 680-686.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.04.010     OR     http://www.zjujournals.com/eng/Y2018/V52/I4/680


基于灰狼算法与小波神经网络的目标威胁评估

为了提高目标威胁度评估的精确度,建立反向学习灰狼算法(OGWO)优化小波神经网络的目标威胁评估模型(OGWO-WNN),提出基于该模型的算法.该模型使用反向学习策略(OBL)优化灰狼算法(GWO),通过改进后的灰狼算法优化小波神经网络的各权值和小波基函数的平移因子与伸缩因子,使优化后的小波神经网络能够对威胁度测试样本集作更好的预测.实验结果显示,采用反向学习灰狼算法能够更好地优化小波神经网络的权值与平移、伸缩因子,使建立的小波神经网络目标威胁评估模型具有更高的预测精度和更强的泛化能力,能够精准、有效地实现目标威胁评估.

[1] 姚磊, 王红明, 郑锋, 等. 空中目标威胁估计的模糊聚类方法研究[J]. 武汉理工大学学报:交通科学与工程版, 2010, 34(6):1159-1161. YAO Lei, WANG Hong-ming, ZHENG Feng, et al. Study fuzzy clustering method of air target threat assessment[J]. Journal of Wuhan University of Technology:Transportation Science and Engineering, 2010, 34(6):1159-1161.
[2] 王改革, 郭立红, 段红, 等. 基于萤火虫算法优化BP神经网络的目标威胁估计[J]. 吉林大学学报:工学版, 2013, 43(4):1064-1069. WANG Gai-ge, GUO Li-hong, DUAN Hong, et al. Target threat assessment using glowworm swarm optimization and BP neural network[J]. Journal of Jilin University:Engineering and Technology Edition, 2013, 43(4):1064-1069.
[3] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey Wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3):46-61.
[4] MADADI A, MOTLAGH M M. Optimal control of DC motor using grey wolf optimizer algorithm[J]. Technical Journal of Engineering and Applied Science, 2014, 4(4):373-379.
[5] DELYON B, JUDITSKY A, BENVENISTE A. Accuracy analysis for wavelet approximations[J]. IEEE Transactions on Neural Networks, 1995, 6(2):332-348.
[6] SONG H, SULAIMAN M, MOHAMED M. An application of grey wolf optimizer for solving combined economic emission dispatch problems[J]. International Review on Modeling and Simulation, 2014, 7(5):838-844.
[7] 龙文, 赵东泉, 徐松金. 求解约束优化问题的改进灰狼优化算法[J]. 计算机应用, 2015, 35(9):2590-2595. LONG Wen, ZHAO Dong-quan, XU Song-jin. Improved grey wolf optimization algorithm for constrained optimization problem[J]. Journal of Computer Applications, 2015, 35(9):2590-2595.
[8] EI-GAAFARY A A M, MOHAMED Y S, HEMEIDA A M, et al. Grey wolf optimization for multi input multi output system[J]. Universal Journal of Communications and Networks, 2015, 3(1):1-6.
[9] 康岚兰, 董文永, 田降森. 一种自适应柯西变异的反向学习粒子群优化算法[J]. 计算机科学, 2015, 42(10):226-231. KANG Lan-lan, DONG Wen-yong, TIAN Jiang-sen. Opposition-based particle swarm optimization with adaptive Cauchy mutation[J]. Computer Science, 2015, 42(10):226-231.
[10] DEB S, DEB S, GANDOMI A H, et al. Opposition-based krill herd algorithm with Cauchy mutation and position clamping[J]. Neurocomputing, 2016, 177(C):147-157.
[11] 周新宇,吴志健,王晖,等. 一种精英反向学习的粒子群优化算法[J].电子学报,2013,41(8):1647-1652. ZHOU Xin-yu, WU Zhi-jian, WANG Hui, et a1. Elite opposition-based particle swam optimization[J]. Acta E1ectronica Sinica, 2013, 41(8):1647-1652.
[12] 刘海波, 王和平, 沈立顶. 基于SAPSO优化灰色神经网络的空中目标威胁估计[J]. 西北工业大学学报, 2016, 34(1):25-32. LIU Hai-bo, WANG He-ping, SHEN Li-ding. Target threat assessment using SAPSO and grey neural network[J]. Journal of Northwestern Polytechnical University, 2016, 34(1):25-32.
[13] 王改革, 郭立红, 段红, 等. 基于Elman_AdaBoost强预测器的目标威胁评估模型及算法[J]. 电子学报, 2012, 40(5):901-906. WANG Gai-ge, GUO Li-hong, DUAN Hong, et al. The model and algorithm for the target threat assessment based on Elman_AdaBoost strong predictor[J]. Acta Electronica Sinica, 2012, 40(5):901-906.
[14] KASIVISWANATHAN K S, HE J, SUDHEER K P, et al. Potential application of wavelet neural network ensemble to forecast stream flow for flood management[J]. Journal of Hydrology, 2016, 53(6):161-173.
[15] WANG G, GUO L, DUAN H. Wavelet neural network using multiple wavelet functions in target threat assessment[J]. The Scientific World Journal, 2013, 13(1):632437.
[16] YAO Y, ZHAO J, WANG Y, et al. MADM of threat assessment with attempt of target[J]. Advances in Technology and Management, 2012, 33(2):171-179.
[17] HASSANIN M F, SHOEB A M, HASSANIEN A E. Grey wolf optimizer-based back-propagation neural network algorithm[C]//Computer Engineering Conference. Cairo:[s. n.], 2017.

[1] HAN Yong, NING Lian-ju, ZHENG Xiao-lin, LIN Wei-hua, SUN Zhong-yuan. Matrix factorization recommendation based on social information and item exposure[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 89-98.
[2] ZHENG Zhou, ZHANG Xue-chang, ZHENG Si-ming, SHI Yue-ding. Liver segmentation in CT images based on region-growing and unified level set method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2382-2396.
[3] ZHAO Li-ke, ZHENG Shun-yi, WANG Xiao-nan, HUANG Xia. Rigid object position and orientation measurement based on monocular sequence[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2372-2381.
[4] HE Jie-guang, PENG Zhi-ping, CUI De-long, LI Qi-rui. Teaching-learning-based optimization algorithm with local dimension improvement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2159-2170.
[5] LI Zhi, SHAN Hong, MA Tao, HUANG Jun. Group discovery of mobile terminal users based on reverse-label propagation algorithm[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2171-2179.
[6] WANG Shuo-peng, YANG Peng, SUN Hao. Construction process optimization of fingerprint database for auditory localization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1973-1979.
[7] WEI Xiao-feng, CHENG Cheng-qi, CHEN Bo, WANG Hai-yan. Chain code based on independent edge number[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1686-1693.
[8] CHEN Rong-hua, WANG Ying-han, BU Jia-jun, YU Zhi, GAO Fei. Website accessibility sampling evaluation based on KNN and local regression[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1702-1708.
[9] ZHANG Cheng-zhi, FENG Hua-jun, XU Zhi-hai, LI Qi, CHEN Yue-ting. Piecewise noise variance estimation of images based on wavelet transform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1804-1810.
[10] LIU Zhou-zhou, LI Shi-ning, LI Bin, WANG Hao, ZHANG Qian-yun, ZHENG Ran. New elastic collision optimization algorithm and its application in sensor cloud resource scheduling[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1431-1443.
[11] WANG Yong-chao, ZHU Kai-lin, WU Qi-xuan, LU Dong-ming. Adaptive display technology of high precision model based on local rendering[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1461-1466.
[12] SUN Nian, LI Yu-qiang, LIU Ai-hua, LIU Chun, LI Wei-wei. Microblog sentiment analysis based on collaborative learning under loose conditions[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1452-1460.
[13] ZHENG Shou-guo, CUI Yan-min, WANG Qing, YANG Fei, CHENG Liang. Design of field data acquisition platform for aircraft assembly[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1526-1534.
[14] BI Xiao-jun, WANG Chao. Many-objective evolutionary algorithm based on hyperplane projection[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1284-1293.
[15] ZHANG Ting-rong, TENG Qi-zhi, LI Zheng-ji, QING Lin-bo, HE Xiao-hai. Super-resolution reconstruction for three-dimensional core CT image[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1294-1301.