In order to visualize the effect of shaped sections on the joints, and to provide some experience for the safety design of bolted timber joints with slotted-in shaped steel plates, a CFRP-bolted timber joints with slotted-in corrugated steel plates was proposed, and uniaxial paralleling tensile tests were carried out under orthogonal parametric design conditions. The tests reveal that the joints have multiple force characteristics, which mainly include the forms of timber shear damage, transverse to tension-type fracture (TL fracture), end compression crush, CFRP fracture and bolt bending. The joints have no obvious yielding stage, and mainly undergo the elastic stage, the fracture failure transition stage and the fracture failure stage. Based on the orthogonal parametric analysis, the degree and the pattern of different factors on the proposed joint were obtained. Results show that the ultimate strength and ductility are more significantly influenced by each factor than the elastic stiffness, and the wave angle and the wave height are the main factors. The ultimate strength fluctuates with the increase of the wave height and is negatively correlated with the wave angle, while the ductility is negatively correlated with the wave angle and the wave height.
Xuan GUO,Zhonggen XU,Yatao ZHAO,Danyun ZHONG. Orthogonal experimental study on mechanical properties of CFRP-bolted timber joints with slotted-in corrugated steel plates. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 847-856.
Fig.1Design details of specimen for CFRP-bolted timber joints with slotted-in corrugated steel plates
因素
水平
λ/mm
35、40、45、50
h/mm
10、15、20、25
θ/(°)
48、58、68、78
t/mm
90、120、150、180
n
0、1、2、3
Tab.1Factors and levels
编号
λ/mm
h/mm
θ/(°)
t/mm
n
CSJ1
35
10
48
90
0
CSJ2
35
15
58
120
1
CSJ3
35
20
68
150
2
CSJ4
35
25
78
180
3
CSJ5
40
10
58
150
3
CSJ6
40
15
48
180
2
CSJ7
40
20
78
90
1
CSJ8
40
25
68
120
0
CSJ9
45
10
68
180
1
CSJ10
45
15
78
150
0
CSJ11
45
20
48
120
3
CSJ12
45
25
58
90
2
CSJ13
50
10
78
120
2
CSJ14
50
15
68
90
3
CSJ15
50
20
58
180
0
CSJ16
50
25
48
150
1
Tab.2Type of specimens for CFRP-bolted timber joints with slotted-in corrugated steel plates
Fig.2Experiment loading of specimen for CFRP-bolted timber joints with slotted-in corrugated steel plates
Fig.3Area division schematic
Fig.4Experiment phenomena of specimens for CFRP-bolted timber joints with slotted-in corrugated steel plates
Fig.5Simplified mode of double cantilever beam fracture
Fig.6Deformation form of bolts
失效模式
试件编号
S Ⅰ
S Ⅰ、S Ⅲ
S Ⅲ
S Ⅲ、S Ⅳ
S Ⅳ
端部承压
—
—
—
CSJ6
CSJ9
TL断裂
CSJ1、CSJ2
—
CSJ5
—
—
CFRP断裂
CSJ12
CSJ11、CSJ14
—
CSJ3、CSJ16
—
端部剪切
CSJ7、CSJ13
CSJ8
—
CSJ4、CSJ10、CSJ15
—
Tab.3Failure modes of specimens for CFRP-bolted timber joints with slotted-in corrugated steel plates and yield modes of bolts
Fig.7Load-displacement curve of specimen
Fig.8Definitions of main mechanical property parameters
试件
ke/(kN·mm?1)
Fy/kN
Δy/mm
Fmax/kN
Δu/mm
D
CSJ1
3.86(4.83)
40.78(4.63)
14.11(7.51)
46.81(6.94)
52.63(7.42)
3.73(11.59)
CSJ2
4.22(6.98)
43.22(4.01)
13.74(4.60)
52.31(3.99)
57.22(3.06)
4.17(6.62)
CSJ3
4.25(8.76)
43.88(3.27)
13.46(5.76)
50.89(2.82)
34.75(4.34)
2.58(4.59)
CSJ4
4.11(3.74)
43.00(3.76)
15.95(8.13)
54.27(6.23)
26.33(7.67)
1.65(5.18)
CSJ5
4.39(10.64)
55.95(4.59)
16.59(4.91)
66.92(3.79)
72.84(7.70)
4.39(3.55)
CSJ6
4.51(12.72)
63.20(7.09)
18.16(6.33)
74.07(7.12)
75.78(7.13)
4.29(7.05)
CSJ7
3.65(3.98)
34.22(4.80)
11.82(4.63)
43.86(5.85)
18.16(5.46)
1.53(9.40)
CSJ8
3.73(1.55)
39.23(3.64)
15.31(3.82)
47.85(4.54)
20.20(4.59)
1.32(0.93)
CSJ9
4.72(7.54)
53.78(8.68)
16.02(4.05)
62.29(7.19)
42.51(4.94)
2.65(8.28)
CSJ10
4.21(3.45)
47.92(5.95)
14.72(6.09)
54.05(3.11)
21.12(6.23)
1.43(5.56)
CSJ11
4.31(4.66)
45.83(4.04)
13.94(4.21)
57.32(3.90)
40.36(5.23)
2.90(7.28)
CSJ12
3.67(2.46)
36.15(6.75)
14.98(5.29)
45.06(4.80)
29.00(1.66)
1.93(4.02)
CSJ13
3.91(3.71)
45.13(6.34)
15.46(7.77)
47.12(7.87)
31.57(8.37)
2.04(10.40)
CSJ14
4.22(8.66)
44.77(3.46)
15.81(3.59)
50.24(4.66)
38.34(6.16)
2.42(5.02)
CSJ15
4.33(5.99)
39.96(5.15)
14.93(13.21)
44.78(8.91)
36.88(10.61)
2.48(12.79)
CSJ16
3.75(4.79)
43.48(2.14)
19.66(2.81)
51.05(4.62)
48.40(4.11)
2.46(4.92)
Tab.4Mechanical property parameters of specimens for CFRP-bolted timber joints with slotted-in corrugated steel plates
力学性能参数
因素(来源)
Q
df
MS
VS
Sig
ke
λ
0.070
3
0.023
0.254
0.048
h
2.179
3
1.060
11.494
0.002
θ
0.129
3
0.043
0.465
0.025
t
3.050
3
0.683
7.414
0.000
n
0.140
3
0.047
0.506
0.017
Fmax
λ
346.140
3
115.380
21.792
0.030
h
1060.310
3
353.437
66.755
0.000
θ
955.105
3
318.368
60.131
0.000
t
603.177
3
201.059
37.975
0.000
n
416.372
3
138.791
26.214
0.020
D
λ
5.349
3
1.783
268.445
0.000
h
14.880
3
4.960
746.823
0.000
θ
22.003
3
7.334
1104.279
0.000
t
1.574
3
0.525
78.985
0.010
n
2.424
3
0.808
121.672
0.003
ke
误差
2.950
32
0.092
—
—
Fmax
169.425
32
5.295
—
—
D
0.213
32
0.007
—
—
ke
总计
798.269
48
—
—
—
Fmax
119 369.595
48
—
—
—
D
365.434
48
—
—
—
Tab.5Variance analysis of main mechanical property parameters
Fig.9Multiple comparison of significant factors
[1]
LI J, RISMANCHI B, NGO T Feasibility study to estimate the environmental benefits of utilising timber to construct high-rise buildings in Australia[J]. Build Environmental, 2019, 147: 108- 120
doi: 10.1016/j.buildenv.2018.09.052
[2]
AWALUDIN A, HIRAI T, HAYASHIKA T, et al Load-carrying capacity of steel-to-timber joints with a pretensioned bolt[J]. Journal of Wood Science, 2008, 54: 362- 368
doi: 10.1007/s10086-008-0962-8
[3]
JENSEN J L, QUENNEVILLE P Experimental investigations on row shear and splitting in bolted connections[J]. Construction and Build Materials, 2011, 25 (5): 2420- 2425
doi: 10.1016/j.conbuildmat.2010.11.050
[4]
Canadian Standards Association. Engineering design in wood: CSA O86 [S]. [S.l.]: Canadian Standards Association Group, 2019.
[5]
ANSI. National design specification for wood construction: ANSI/NDS SUPP-2018 [S]. Washington DC: American Forest and Paper Association, 2018.
[6]
European Committee. Eurocode 5: design of timber structures part1-1: general-common rules and rules for buildings: EN 1995-1-1 [S]. [S.l.]: European Committee, 2004.
[7]
祝恩淳, 王笑婷, 牛爽, 等 木结构钢板螺栓连接节点承载力计算分析及试验研究[J]. 建筑结构学报, 2020, 41 (1): 113- 121 ZHU Enchun, WANG Xiaoting, NIU Shuang, et al Experimental and analytical study of load-carrying capability of bolt connected joints with steel plates for timber structures[J]. Journal of Building Structures, 2020, 41 (1): 113- 121
[8]
JORISSEN A. Double shear timber connections with dowel type fasteners [D]. Delft: Delft University of Technology, 1998.
[9]
XU B H, BOUCHAÏR A, RACHER P Mechanical behavior and modeling of dowelled steel-to-timber moment-resisting connections[J]. Journal of Structural Engineering, 2015, 141 (6): 04014165
doi: 10.1061/(ASCE)ST.1943-541X.0001119
[10]
刘柯珍. 落叶松胶合木梁柱连接节点设计与承载性能评价[D]. 北京: 中国林业科学研究院, 2011. LIU Kezhe. Connection design and bearing performance evaluation for larch laminated wood beams and columns [D]. Beijing: Chinese Academy of Forestry, 2011.
[11]
周乾, 闫维明, 纪金豹 含嵌固墙体古建筑木结构震害数值模拟研究[J]. 建筑结构, 2010, 40 (1): 100- 103 ZHOU Qian, YAN Weiming, JI Jinbao Study on damage numerical simulation of an ancient wooden building embedded with masonry walls[J]. Building Structure, 2010, 40 (1): 100- 103
[12]
XIONG G Long-term behaviour of steel-strip reinforced wood shaving-cement board roof panel[J]. Cement and Concrete Composites, 1998, 20 (4): 329- 334
doi: 10.1016/S0958-9465(98)00014-6
[13]
GUAN Z, RODD P Modelling of timber joints made with steel dowels and locally reinforced by DVW discs[J]. Structural Engineering and Mechanics, 2003, 16 (4): 391- 404
doi: 10.12989/sem.2003.16.4.391
[14]
DAGHER H J, BRAGDON M. Advanced FRP-wood composites in bridge applications [C]// Structures 2001: A Structural Engineering Odyssey . [S. l.]: ASCE, 2001: 35.
[15]
许云松, 龚永智, 李龙. 某砖木结构的CFRP板加固改造设计与施工[C]// 全国FRP应用技术学术交流会. 济南: [s.n.], 2006: 273–277. XU Yunsong, GONG Yongzhi, LI Long. Strengthening design and construction with the CFRP slab of a brick-wood structure [C]// National Academic Communication Conference on FRP Application Technology , Jinan: [s.n.], 2006: 273–277.
[16]
李大华, 徐扬, 郑鹄 对山西应县木塔采用纳米复合纤维加固的建议[J]. 山西地震, 2004, (4): 24- 25 LI Dahua, XU Yang, ZHENG Gu Suggestion for reinforcing Yingxian Wooden Tower with millimicron compound fiber[J]. Earthquake Research in Shanxi, 2004, (4): 24- 25
[17]
GLOBA A, SUBHANI M, MOLONEY J et al. Carbon fiber and structural timber composites for engineering and construction[J]. Journal of Architectural Engineering, 2018, 24 (3): 04018018
doi: 10.1061/(ASCE)AE.1943-5568.0000318
[18]
SUBHANI M, GLOBA A, MOLONEY J TimberFRP composite beam subjected to negative bending[J]. Structural Engineering and Mechanics, 2020, 73 (3): 353- 365
[19]
ALAM M A, JUMAAT M Z Experimental investigations on U-and L-shaped end anchored CFRP laminate strengthened reinforced concrete beams[J]. Arabian Journal for Science and Engineering, 2012, 37: 905- 919
doi: 10.1007/s13369-012-0213-6
[20]
DE JESUS A M, PINTO J M T, MORAIS J J L Analysis of solid wood beams strengthened with CFRP laminates of distinct lengths[J]. Construction and Building Materials, 2012, 35: 817- 828
doi: 10.1016/j.conbuildmat.2012.04.124
[21]
TRIANTAFILLOU T C Shear reinforcement of wood using FRP materials[J]. Journal of Materials in Civil Engineering, 1997, 9 (2): 65- 69
doi: 10.1061/(ASCE)0899-1561(1997)9:2(65)
WU C, FENG P, BAI Y Comparative study on static and fatigue performances of pultruded GFRP joints using ordinary and blind bolts[J]. Journal of Composites for Construction, 2014, 19 (4): 04014065
[25]
徐德良, 刘伟庆, 杨会峰, 等 木材-钢填板螺栓连接的承载能力试验研究[J]. 南京工业大学学报: 自然科学版, 2009, 31 (1): 87- 91 XU Deliang, LIU Weiqing, YANG Huifeng et al. Experimental study on bearing capacity of bolted wood-steel-wood connections in timber structures[J]. Journal of Nanjing University of Technology: Natural Science Edition, 2009, 31 (1): 87- 91
[26]
LIU Y, WANG Y, ZHANG Y, et al Force-displacement relations of bolted timber joints with slotted-in steel plates parallel to the grain[J]. Journal of Wood Science, 2020, 66: 70- 83
doi: 10.1186/s10086-020-01911-1
[27]
邵卓平. 木材和竹材的断裂与损伤[D]. 合肥: 安徽农业大学, 2009. SHAO Zhuoping. Fracture and damage of wood and bamboo [D]. Hefei: Anhui Agricultural University, 2009.
[28]
邵卓平, 任海青, 江泽慧 柔度法标定木材断裂韧性的研究[J]. 林业科学, 2001, 37 (2): 112- 116 SHAO Zhuoping, REN Haiqing, JIANG Zehui Study on the compliance method for determine wood fracture toughness[J]. Scientia Silvae Sinicae, 2001, 37 (2): 112- 116
doi: 10.3321/j.issn:1001-7488.2001.02.018
[29]
刘良林, 王全凤, 沈章春 基于损伤的累积滞回耗能与延性系数[J]. 地震, 2008, 28 (4): 13- 19 LIU Lianglin, WANG Quanfeng, SHEN Zhangchun Study on accumulated dissipated hysteretic energy and ductility indes based on damage[J]. Earthquake, 2008, 28 (4): 13- 19
doi: 10.3969/j.issn.1000-3274.2008.04.002
[30]
汪佑宏, 费本华, 王传贵, 等 试样厚度及缺角对人工林木材顺纹抗剪强度的影响[J]. 木材工业, 2008, 22 (5): 14- 16 WANG Youhong, FEI Benhua, WANG Chuangui, et al Effects of sample thickness and cutting angle on shear strength parallel to grain[J]. China Wood Industry, 2008, 22 (5): 14- 16