Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (3): 557-569    DOI: 10.3785/j.issn.1008-973X.2024.03.013
    
Calculation approach for deformation of adjacent pile foundation caused by diagonal intersection with side penetration construction of shield tunnel
Chao WANG1(),Chunzhou ZHU2,Jinfeng ZOU1,*(),Bo LIU2,Hanqiu ZHANG3,Jiangfeng MA2
1. School of Civil Engineering, Central South University, Changsha 410075, China
2. Institute of Nanchang, China Railway Shanghai Design Institute Group Co. Ltd, Nanchang 330000, China
3. Metro Project Management Branch, Nanchang Urban Rail Group Co. Ltd, Nanchang 330038, China
Download: HTML     PDF(2880KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The calculation approach for the deformation of existing bridge pile foundation caused by diagonal intersection with side penetration construction of the shield tunnel was established. The approach was established based on the modified Loganathan formula, the Winkel elastic foundation beam model, the m-method calculation theory and the load transfer method, taking the circular section pile as an example. The engineering applicability of the calculation approach was verified through field monitoring results, and the method was used to analyze the main influencing factors of horizontal deflection deformation of piles caused by the diagonal intersection with side penetration construction of shield tunnel. Results showed that the maximum error between the theoretical results and the monitoring results for the horizontal displacement of the pile body and the vertical displacement of the pile top were less than 14.6% and 2.7%, respectively. The calculation results of the proposed method were closer to the measured values, compared with that of the existing methods. The horizontal deflection of the pile body in the entry section was negatively correlated with the horizontal distance between the tunnel axis and the center axis of the pile foundation, and the oblique angle of the tunnel side penetration. The maximum horizontal deflection displacement was also negatively related to the tunnel side penetration angle. The maximum horizontal deflection was 7.4 mm at the horizontal side penetration distance of 6.0 m, while the maximum horizontal deflection displacement was 15.4 mm at the tunnel shield side penetration angle of 70.0°.



Key wordsshield tunnel      diagonal intersection with side penetration      adjacent bridge pile foundation      deformation law      horizontal deflection deformation of pile     
Received: 19 April 2023      Published: 05 March 2024
CLC:  TU 473  
Fund:  南昌轨道交通集团2020年度科研计划资助项目(2020HGKYB002).
Corresponding Authors: Jinfeng ZOU     E-mail: wangchao214801069@yeah.net;zoujinfeng_csu@163.com
Cite this article:

Chao WANG,Chunzhou ZHU,Jinfeng ZOU,Bo LIU,Hanqiu ZHANG,Jiangfeng MA. Calculation approach for deformation of adjacent pile foundation caused by diagonal intersection with side penetration construction of shield tunnel. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 557-569.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.03.013     OR     https://www.zjujournals.com/eng/Y2024/V58/I3/557


盾构隧道近接斜交侧穿桥梁桩基变形计算方法

以圆形截面桩为例,基于修正后的Loganathan公式,利用文克尔弹性地基梁模型、m法计算理论和荷载传递法,建立盾构隧道近接斜交侧穿既有桥梁桩基的变形计算方法. 通过现场监测结果验证计算方法的工程适用性,并利用该方法分析侧穿桥梁桩基施工引起桩身水平挠曲变形的主要影响因素. 结果表明:桩身水平位移和桩顶竖向位移的理论计算结果与监测结果之间的最大误差分别不超过14.6%和2.7%. 与现有方法相比,所提方法的计算结果更接近实测值. 入土段桩身水平挠曲程度与隧道轴心和桩基中心轴线之间的水平距离、隧道侧穿斜交角呈负相关;最大水平挠曲位移与隧道侧穿斜交角呈负相关. 当水平侧穿距离为6.0 m时,最大水平挠曲变形为7.4 mm;当隧道盾构侧穿斜交角为70.0°时,入土段桩身最大水平挠曲位移为15.4 mm.


关键词: 盾构隧道,  斜交侧穿,  邻近桥梁桩基,  变形规律,  桩身水平挠曲变形 
Fig.1 Schematic diagram of Winkel elastic foundation beam model for bridge pile foundations
Fig.2 Layout diagram of shield tunnel construction for diagonal intersection with side penetration of adjacent existing bridge pile foundation
Fig.3 Pile-soil interaction model of bridge pile foundation during diagonal interaction with side penetration of tunnel shield
Fig.4 Differential calculation model of pile identity segment
Fig.5 Mechanical model for transmission of vertical load of bridge pile body
Fig.6 Calculation model of shear stress in tunnel vault under soil unloading and rebound
Fig.7 Site of shield tunnel construction for diagonal intersection with side penetration of adjacent existing railway bridge pile foundation
岩土层名称Γ / mγ / (kN?m?3)cs / kPaφ / (°)Es / MPaν
杂填土1.817.85.516.5
粉质黏土5.417.625.224.48.50.35
粗砂3.220.2022.312.60.29
砾砂14.222.5023.616.30.25
强风化泥质粉砂岩2.623.210.220.222.50.21
中风化泥质粉砂岩20.823.613.621.825.30.18
Tab.1 Statistics on values of physical and mechanical parameters of soil
Fig.8 Schematic diagram of relationship between pile foundation of existing railroad bridge and location of shield tunnel
Fig.9 Layout of pile foundation deformation monitoring points of railroad bridges in unincorporated section
Fig.10 Comparison of pile displacement results for unincorporated section
Fig.11 Comparison of horizontal displacement of pile body obtained by different methods
Fig.12 Horizontal deflection curve of pile body under influence of horizontal distance between tunnel axis and pile center axis
Fig.13 Horizontal deflection deformation curve of pile body under influence of oblique intersection angle of shield side penetration
[1]   王金华, 徐长节, 王玉林, 等 盾构近距离侧穿桥梁及下穿公路变形规律与控制技术研究[J]. 公路, 2023, 68 (1): 400- 406
WANG Jinhua, XU Changjie, WANG Yulin, et al Research on deformation law and control technology of shield close side crossing bridge and underpassing highway[J]. Highway, 2023, 68 (1): 400- 406
[2]   周鑫, 杨建辉, 刘涛 盾构法施工对近距离侧穿桥梁桩基的影响分析[J]. 地下空间与工程学报, 2022, 18 (2): 586- 595
ZHOU Xin, YANG Jianhui, LIU Tao Analysis on the influence of shield construction on lateral and closely cross bridge pile foundation[J]. Chinese Journal of Underground Space and Engineering, 2022, 18 (2): 586- 595
[3]   WANG J, WEN Z F Analysis of construction impact of a large diameter shield tunneling side-crossing viaduct pile foundations in short distance[J]. Geotechnical and Geological Engineering, 2021, 39 (8): 5587- 5598
doi: 10.1007/s10706-021-01846-4
[4]   黄戡, 孙逸玮, 杨伟军, 等 基于渗流应力耦合的盾构隧道开挖对邻近桥梁桩基的影响[J]. 中南大学学报:自然科学版, 2021, 52 (3): 983- 993
HUANG Kan, SUN Yiwei, YANG Weijun, et al Influence of shield tunneling on pile foundation of adjacent bridge using fluid-soil coupling theory[J]. Journal of Central South University: Science and Technology, 2021, 52 (3): 983- 993
[5]   冯国辉, 窦炳珺, 张高锋, 等 隧道开挖引起水平向位移被动桩的简化计算方法[J]. 土木与环境工程学报:中英文, 2021, 43 (2): 10- 18
FENG Guohui, DOU Bingjun, ZHANG Gaofeng, et al Simplified calculation method for lateral displacement of passive pile caused by tunneling[J]. Journal of Civil and Environmental Engineering, 2021, 43 (2): 10- 18
[6]   程康, 徐日庆, 林存刚, 等 既有单桩在邻近基坑开挖下的水平向响应简化分析[J]. 浙江大学学报:工学版, 2020, 54 (1): 91- 101
CHENG Kang, XU Riqing, LIN Cungang, et al Simplified analysis method for evaluating horizontal deformation of single pile due to adjacent foundation pit excavation[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (1): 91- 101
[7]   熊巨华, 王远, 刘侃, 等 隧道开挖对邻近单桩竖向受力特性影响[J]. 岩土力学, 2013, 34 (2): 475- 482
XIONG Juhua, WANG Yuan, LIU Kan, et al Effects of tunneling on vertical bearing behaviors of adjacent single pile[J]. Rock and Soil Mechanics, 2013, 34 (2): 475- 482
doi: 10.16285/j.rsm.2013.02.033
[8]   毛坚强, 徐骏, 杨磊 滑体段采用m法模型的抗滑桩计算方法[J]. 岩土力学, 2018, 39 (4): 1197- 1202
MAO Jianqiang, XU Jun, YANG Lei An improved method for stabilising pile by using m-method model to the whole pile[J]. Rock and Soil Mechanics, 2018, 39 (4): 1197- 1202
[9]   杨美良, 罗婉庆, 张建仁 考虑剪切变形影响的桩基m法计算理论[J]. 土木与环境工程学报:中英文, 2016, 38 (6): 54- 61
YANG Meiliang, LUO Wanqing, ZHANG Jianren Calculating theory of m method assumption for piles with shear deformation effect[J]. Journal of Civil and Environmental Engineering, 2016, 38 (6): 54- 61
[10]   LOGANATHAN N, POULOS H G Analytical prediction for tunneling-induced ground movement in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124 (9): 846- 856
doi: 10.1061/(ASCE)1090-0241(1998)124:9(846)
[11]   张继超, 曾垂刚, 崔乐健, 等 基于Loganathan & Poulos、Clough修正公式的浅埋超大直径盾构隧道地面沉降预测[J]. 隧道建设:中英文, 2022, 42 (Suppl.1): 274- 280
ZHANG Jichao, ZENG Chuigang, CUI Lejian, et al Ground settlement prediction of shallow-buried super-large-diameter shield tunnel based on Loganathan and Poulos and Clough modified formulas[J]. Tunnel Construction, 2022, 42 (Suppl.1): 274- 280
[12]   张治国, 姜蕴娟, 徐晨, 等 对“考虑桩侧土体三维效应和地基剪切变形的隧道开挖对邻近桩基影响分析”讨论的答复[J]. 岩土工程学报, 2018, 40 (7): 1360- 1362
ZHANG Zhiguo, JIANG Yunjuan, XU Chen, et al Reply to discussion on “influence of tunneling on deflection of adjacent piles considering shearing deformation of foundation and 3D effects of lateral soils beside piles”[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (7): 1360- 1362
doi: 10.11779/CJGE201807026
[13]   MORFIDIS K. Research and development of methods for the modeling of foundation structural elements and soil [D]. Thessaloniki: Aristotle University of Thessaloniki, 2003: 45-72.
[14]   RANDOLPH M F, WROTH C P Analysis of deformation of vertically load piles[J]. Geotechnical Engineering Division, Proceedings of the American Society of Civil Engineers, 1978, 104 (12): 1465- 1488
[15]   赵明华, 邹丹, 邹新军 基于荷载传递法的高承台桩基沉降计算方法研究[J]. 岩石力学与工程学报, 2005, 24 (13): 2310- 2314
ZHAO Minghua, ZOU Dan, ZOU Xinjun Settlement calculation of pile foundations with elevated caps by load transfer method[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24 (13): 2310- 2314
[16]   高子坤, 施建勇 岩土抗拉模量值修正与桩土作用理论解答研究[J]. 力学学报, 2013, 45 (5): 739- 745
GAO Zikun, SHI Jianyong Research of constitutive relation correction of geotechnical materials and theoretical solution due to pile-soil interaction[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45 (5): 739- 745
[17]   ZHANG Z G, HUANG M S, XU C, et al Simplified solution for tunnel-soil-pile interaction in Pasternak’s foundation model[J]. Tunnelling and Underground Space Technology, 2018, 78 (8): 146- 158
[18]   冯国辉, 郑茗旺, 窦炳珺, 等 盾构掘进引起的邻近群桩水平位移解析研究[J]. 中南大学学报: 自然科学版, 2022, 53 (4): 1371- 1380
FENG Guohui, ZHENG Mingwang, DOU Bingjun, et al Analytical study of horizontal displacement of adjacent pile group caused by shield tunneling[J]. Journal of Central South University: Science and Technology, 2022, 53 (4): 1371- 1380
[1] Han-yuan LI,Xing-gao LI,Yang LIU,Yi YANG,Ming-zhe MA. Longitudinal stress and deformation characteristics of shield tunnel crossing active fault[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 340-352.
[2] Zhe-jian ZHOU,Yi-xiong FAN,Ran FANG,Xue-cheng BIAN. Foundation settlement-induced bending analysis of composite structures in water-conveying shield tunnels[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2476-2488.
[3] Han-yuan LI,Xing-gao LI,Ming-zhe MA,Hao LIU,Yi YANG. Model experimental study on influence of buried fault dislocation on shield tunnel[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 631-639.
[4] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[5] Zi-xin ZHANG,Jia-qi ZHANG,Xin HUANG,Qian-wei ZHUANG. Experimental study on prediction of long-term durability of sealing gasket of shield tunnel[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 118-125.
[6] YANG Chun-shan, WEI Li-xin, MO Hai-hong, HE Ze-gan. Longitudinal rigidity of shield tunnel considering deformation characteristic and joints characteristic of lining[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 358-366.
[7] LI Zhong-chao, CHEN Ren-peng, MENG Fan-yan, YE Jun-neng. Tunnel boring machine tunneling-induced ground settlements in soft clay and influence of excavation parameters[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1268-1275.
[8] LI Zhong-chao, CHEN Ren-peng, MENG Fan-yan, YE Jun-neng. Tunnel boring machine tunneling-induced ground settlements in soft clay and influence of excavation parameters[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 2-3.
[9] CHEN Ren-peng, LIU Yuan, LIU Sheng-xiang, TANG Lv-jun. Characteristics of upward moving for lining during shield tunnelling construction[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1068-1074.
[10] SHI Hu, YANG Hua-yong, GONG Guo-fang, HOU Dian-qing. Definition and evaluation method for compliance of thrust hydraulic system for shield tunneling machine[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1444-1449.
[11] SHI Hu, YANG Hua-yong, GONG Guo-fang, WANG Lin-tao. Key technologies of shield tunneling machine and present status and prospect of test rigs for tunneling simulation [J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 741-749.
[12] LIU Wei, ZHANG Xiang-jie, TANG Xiao-wu, ZHU Ji, CHEN Ren-peng. Supporting pressure for earth pressure balance tunnel face stability
when tunneling is implemented in saturated sandy soil
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 665-671.
[13] LIN Cun-gang, ZHANG Zhong-miao, WU Shi-ming, CUI Ying-hui. Influences of grouting heave on overlying structures in shield tunneling[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2215-2223.
[14] WANG Lin-tao, GONG Guo-fang, SHI Hu. Energy-saving technology of segment erecting process of
shield tunneling machine based on erecting parameters optimization
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2259-2267.
[15] TENG Tao, XIA Yi-min, YANG Wu-zi, TAN Qing. Characteristics analysis of pressure impact absorption for
shield cutter head drive hydraulic system
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 864-868.