Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (10): 2005-2013    DOI: 10.3785/j.issn.1008-973X.2025.10.001
    
Rehabilitation exoskeleton customized design of kinematic joint based on cone programming reconstruction
Zhengxin TU(),Jinghua XU*(),Shuyou ZHANG
Institute of Design Engineering, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(2745KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new method for the customized design of a kinematic joint rehabilitation exoskeleton was proposed to enhance the matching performance between the ergonomic rehabilitation appliance and the individual joint kinesiology. The bone joint was reconstructed from medical images, improving the reconstruction accuracy, while cone programming iteration was employed to calculate the matching relationship of morphology features, from which the individual joint kinematic posture was reestablished. Compared to the hierarchical matching method, the proposed cone programming reconstruction method reduced the root mean square error, mean absolute error, and maximum error by 10.95%, 12.29%, and 6.05%, respectively. Based on the reconstructed kinematic joint posture, the trajectory of the instantaneous rotation center was simultaneously reckoned. Combined with the three-center theorem, the design of the reverse double rocker mechanism for the rehabilitation exoskeleton was optimized to reduce the instantaneous rotation center trajectory error, resulting in precise human-machine collaborative variable instantaneous center motion in the motion domain. Topological optimization with additive manufacturing constraints was introduced to analyze the load transfer and stress distribution of the exoskeleton part with Hertz contact theory, thereby optimizing material distribution and facilitating the individual customized design of the rehabilitation exoskeleton structure.



Key wordscone programming reconstruction      kinematic joint      rehabilitation exoskeleton      customized design      load transfer      variable instantaneous center motion     
Received: 14 October 2024      Published: 27 October 2025
CLC:  TP 391  
Fund:  国家重点研发计划资助项目(2022YFB3303303).
Corresponding Authors: Jinghua XU     E-mail: 21925099@zju.edu.cn;xujh@zju.edu.cn
Cite this article:

Zhengxin TU,Jinghua XU,Shuyou ZHANG. Rehabilitation exoskeleton customized design of kinematic joint based on cone programming reconstruction. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2005-2013.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.10.001     OR     https://www.zjujournals.com/eng/Y2025/V59/I10/2005


基于锥规划重建的运动关节康复外骨骼定制设计

为了提升人体工学康复器具与个体关节运动学的匹配性能,提出运动关节康复外骨骼定制设计的新方法. 通过医学图像重建骨骼关节,利用锥规划迭代计算形貌特征匹配关系,重建个性化的关节运动姿态,提高重建精度. 与分层匹配方法相比,所提锥规划重建方法的均方根误差、平均绝对误差和最大误差分别降低了10.95%、12.29%和6.05%. 基于重建的运动关节姿态同步推算其瞬时旋转中心轨迹,结合三心定理,以减小瞬时旋转中心轨迹误差为目标,优化康复外骨骼反向双摇杆机构设计,实现运动域中精确的人机协同变瞬心运动. 结合增材制造约束进行拓扑优化,通过赫兹接触理论分析外骨骼零件的载荷传递和应力分布,优化材料分布,实现康复外骨骼结构的个性化定制设计.


关键词: 锥规划重建,  运动关节,  康复外骨骼,  定制设计,  载荷传递,  变瞬心运动 
Fig.1 CT images of left knee joint
Fig.2 Layer area and layer area difference of distal femur
Fig.3 Iterative curves of root mean square error for left knee joint motion posture reconstruction using different methods
$ \theta $/(°)表面匹配分层匹配锥规划重建
RMSEMAXRMSEMIN$ \overline {{\text{RMSE}}} $RMSEMAXRMSEMIN$ \overline {{\text{RMSE}}} $RMSEMAXRMSEMIN$ \overline {{\text{RMSE}}} $
4.8323.375.018.8221.343.778.3821.613.428.88
25.5520.965.249.5322.804.028.3022.593.628.29
47.5920.645.2911.0222.483.408.9621.443.038.52
69.2422.406.1010.0223.314.388.2523.393.908.65
94.4023.375.018.8221.343.778.3821.613.428.88
116.3524.465.209.3323.523.099.2421.683.509.16
Tab.1 Comparison of root mean square error in iterative processes of left knee joint motion posture reconstruction with different methods mm
Fig.4 Cone programming reconstruction for motion posture of left tibiofemoral joint in sagittal plane
$ \theta $/(°)dc/mmcc/m?1
4.8311.253.36×10?3
25.5513.281.21×10?2
47.5917.152.17×10?2
69.2421.291.82×10?2
94.4021.781.80×10?2
116.3525.943.29×10?3
Tab.2 Instantaneous rotation center parameters at different flexion angles
$ \theta $/(°)表面匹配分层匹配锥规划重建
RMSEMAEMERMSEMAEMERMSEMAEME
4.834.550.0220.343.470.0115.423.210.0114.59
25.555.240.0320.164.020.0217.013.620.0216.12
47.595.290.0320.343.400.0215.423.030.0114.59
69.246.100.0320.894.380.0319.463.900.0218.29
94.405.010.0322.123.770.0218.913.420.0217.43
116.355.200.0424.663.870.0219.353.500.0218.44
Tab.3 Comparison of motion posture reconstruction accuracy about left knee joint by different methods mm
Fig.5 Conceptual design of ergonomic rehabilitation exoskeleton for left knee joint
Fig.6 Kinematic model of variable instantaneous center mechanism of left knee joint exoskeleton
参数数值
方案一方案二方案三
$ {L}_{1} $/mm41.3142.2540.84
$ {L}_{2} $/mm58.1656.4855.25
$ {L}_{3} $/mm43.3041.5440.43
$ {L}_{4} $/mm55.1855.6453.72
$ {\alpha }_{1} $/(°)4.76~25.154.42~26.603.99~24.36
$ {\alpha }_{2} $/(°)36.46~43.9733.19~41.9538.08~45.93
$ {\alpha }_{3} $/(°)9.7510.1710.02
$ {\alpha }_{4} $/(°)131.44~144.73130.42~145.93131.94~145.30
Tab.4 Design parameters of variable instantaneous center mechanism under different schemes
Fig.7 Trajectory comparison for two types of instantaneous rotation centers in sagittal plane
Fig.8 Distribution of equivalent stress and load transfer for rehabilitation exoskeleton of left shank component
Fig.9 Strain energy iteration curve of rehabilitation exoskeleton of left shank component
$ {V_{\text{s}}} $/%JMAX/(105 J)JMIN/(105 J)
457.335.42
407.935.44
Tab.5 Strain energy of topologically optimized structures under different volume constraints
Fig.10 Rehabilitation exoskeleton of left shank component printed by digital light processing
[1]   HUNTER D J, MARCH L, CHEW M Osteoarthritis in 2020 and beyond: a lancet commission[J]. Lancet, 2020, 396 (10264): 1711- 1712
doi: 10.1016/S0140-6736(20)32230-3
[2]   CIEZA A, CAUSEY K, KAMENOV K, et al Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. The Lancet, 2020, 396 (10267): 2006- 2017
doi: 10.1016/S0140-6736(20)32340-0
[3]   LALWALA M, DEVANE K S, KOYA B, et al Development and validation of an active muscle simplified finite element human body model in a standing posture[J]. Annals of Biomedical Engineering, 2023, 51 (3): 632- 641
doi: 10.1007/s10439-022-03077-x
[4]   VIANELLO L, MOURET J B, DALIN E, et al Human posture prediction during physical human-robot interaction[J]. IEEE Robotics and Automation Letters, 2021, 6 (3): 6046- 6053
doi: 10.1109/LRA.2021.3086666
[5]   MOUSSE M A, ATOHOUN B. Saliency based human fall detection in smart home environments using posture recognition [J]. Health Informatics Journal, 2021, 27(3): 14604582211030954.
[6]   TAKANO W, LEE H Action description from 2D human postures in care facilities[J]. IEEE Robotics and Automation Letters, 2020, 5 (2): 774- 781
doi: 10.1109/LRA.2020.2965394
[7]   SIMON A A, ALEMI M M, ASBECK A T Kinematic effects of a passive lift assistive exoskeleton[J]. Journal of Biomechanics, 2021, 120: 110317
doi: 10.1016/j.jbiomech.2021.110317
[8]   LERNER Z F, DAMIANO D L, BULEA T C Computational modeling of neuromuscular response to swing-phase robotic knee extension assistance in cerebral palsy[J]. Journal of Biomechanics, 2019, 87: 142- 149
doi: 10.1016/j.jbiomech.2019.02.025
[9]   BARRUTIA W S, BRATT J, FERRIS D P A human lower limb mechanical phantom for the testing of knee exoskeletons[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 2497- 2506
doi: 10.1109/TNSRE.2023.3276424
[10]   陈栋, 李伟达, 张虹淼, 等 基于力反馈导纳控制的踝关节柔性外骨骼[J]. 浙江大学学报: 工学版, 2024, 58 (4): 772- 778
CHEN Dong, LI Weida, ZHANG Hongmiao, et al Ankle flexible exoskeleton based on force feedback admittance control[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (4): 772- 778
[11]   MISSIROLI F, LOTTI N, TRICOMI E, et al Rigid, soft, passive, and active: a hybrid occupational exoskeleton for bimanual multijoint assistance[J]. IEEE Robotics and Automation Letters, 2022, 7 (2): 2557- 2564
doi: 10.1109/LRA.2022.3142447
[12]   DE GROOF S, ZHANG Y, PEYRODIE L, et al Design and control of an individualized hip exoskeleton capable of gait phase synchronized flexion and extension torque assistance[J]. IEEE Access, 2023, 11: 96206- 96220
doi: 10.1109/ACCESS.2023.3311352
[13]   PERRY B, SIVAK J, STOKIC D Providing unloading by exoskeleton improves shoulder flexion performance after stroke[J]. Experimental Brain Research, 2021, 239 (5): 1539- 1549
doi: 10.1007/s00221-021-06070-3
[14]   HACHAJ T, OGIELA M R RMoCap: an R language package for processing and kinematic analyzing motion capture data[J]. Multimedia Systems, 2020, 26 (2): 157- 172
doi: 10.1007/s00530-019-00633-9
[15]   DOBOS T J, BENCH R W G, MCKINNON C D, et al Validation of pitchAITM markerless motion capture using marker-based 3D motion capture[J]. Sports Biomechanics, 2025, 24 (3): 587- 607
doi: 10.1080/14763141.2022.2137425
[16]   ZIEGLER J, REITER A, GATTRINGER H, et al Simultaneous identification of human body model parameters and gait trajectory from 3D motion capture data[J]. Medical Engineering and Physics, 2020, 84: 193- 202
doi: 10.1016/j.medengphy.2020.08.009
[17]   HOUSTON A, WALTERS V, CORBETT T, et al Evaluation of a multi-sensor Leap Motion setup for biomechanical motion capture of the hand[J]. Journal of Biomechanics, 2021, 127: 110713
doi: 10.1016/j.jbiomech.2021.110713
[18]   SAADAT S, ASIKUZZAMAN M, PICKERING M R, et al A fast and robust framework for 3D/2D model to multi-frame fluoroscopy registration[J]. IEEE Access, 2021, 9: 134223- 134239
doi: 10.1109/ACCESS.2021.3114366
[19]   MATSUKI K, MATSUKI K O, KENMOKU T, et al In vivo kinematics of early-stage osteoarthritic knees during pivot and squat activities[J]. Gait and Posture, 2017, 58: 214- 219
doi: 10.1016/j.gaitpost.2017.07.116
[20]   SHIH K S, HSU C C Three-dimensional musculoskeletal model of the lower extremity: integration of gait analysis data with finite element analysis[J]. Journal of Medical and Biological Engineering, 2022, 42 (4): 436- 444
doi: 10.1007/s40846-022-00734-3
[21]   THIENKAROCHANAKUL K, JAVADI A A, AKRAMI M, et al Stress distribution of the tibiofemoral joint in a healthy versus osteoarthritis knee model using image-based three-dimensional finite element analysis[J]. Journal of Medical and Biological Engineering, 2020, 40 (3): 409- 418
doi: 10.1007/s40846-020-00523-w
[22]   SIDHU S P, MOSLEMIAN A, YAMOMO G, et al Lateral subvastus lateralis versus medial parapatellar approach for total knee arthroplasty: a cadaveric biomechanical study[J]. The Knee, 2020, 27 (6): 1735- 1745
doi: 10.1016/j.knee.2020.09.022
[23]   NG D Q K, LIM C T, RAMRUTTUN A K, et al Biomechanical analysis of proximal tibia bone grafting and the effect of the size of osteotomy using a validated finite element model[J]. Medical and Biological Engineering and Computing, 2019, 57 (8): 1823- 1832
doi: 10.1007/s11517-019-01988-x
[24]   PARK S, LEE S, YOON J, et al Finite element analysis of knee and ankle joint during gait based on motion analysis[J]. Medical Engineering and Physics, 2019, 63: 33- 41
doi: 10.1016/j.medengphy.2018.11.003
[25]   XU J H, TU Z X, XU J X, et al Biomechanical strengthening design for limb articulation based on reconstructed skeleton kinesthetics[J]. Journal of Medical and Biological Engineering, 2021, 41 (5): 715- 729
[26]   XU J, TU Z, ZHANG S, et al Customized design for ergonomic products via additive manufacturing considering joint biomechanics[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2023, 2 (3): 100085
doi: 10.1016/j.cjmeam.2023.100085
[27]   TU Z, XU J, DONG Z, et al Load-bearing optimization for customized exoskeleton design based on kinematic gait reconstruction[J]. Medical and Biological Engineering and Computing, 2025, 63 (3): 807- 822
[28]   TU Z, XU J, DONG Z, et al Biomechanical evaluation for bone arthrosis morphology based on reconstructed dynamic kinesiology[J]. Medical Engineering and Physics, 2025, 135: 104278
doi: 10.1016/j.medengphy.2024.104278
[29]   MOSTAFAVI K, JAFARI A, FARAHMAND F A surface registration technique for estimation of 3-D kinematics of joints[J]. Studies in Health Technology and Informatics, 2009, 142: 204- 206
[30]   LIU Y, YAO D, ZHAI Z, et al Fusion of multimodality image and point cloud for spatial surface registration for knee arthroplasty[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2022, 18 (5): e2426
[31]   NAGURA T, DYRBY C O, ALEXANDER E J, et al Mechanical loads at the knee joint during deep flexion[J]. Journal of Orthopaedic Research, 2002, 20 (4): 881- 886
doi: 10.1016/S0736-0266(01)00178-4
[32]   SENTER C, HAME S L Biomechanical analysis of tibial torque and knee flexion angle[J]. Sports Medicine, 2006, 36 (8): 635- 641
doi: 10.2165/00007256-200636080-00001
[1] Hongwei YING,Guan LIU,Huiying GAO,Lisha ZHANG,Yifan XIONG. Deformation characteristics analysis of free single pile in soft clay induced by dewatering in confined aquifer[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 741-749.
[2] Sheng-quan ZHOU,Hao-jin ZHANG,Rui WANG,Yong-fei ZHANG,Dong-wei LI. Bearing characteristics of cement-fly ash mixing pile composite foundation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1724-1731.
[3] ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, ZHANG Ri-hong, YAN Tian-long. Model test on load transfer mechanism of a static drill rooted nodular pile[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 531-537.
[4] ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, ZHANG Ri-hong. Performance of static drill rooted nodular piles under compression[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 835-842.
[5] ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, ZHANG Ri-hong, YAN Tian-long. Model test on load transfer mechanism of a static drill rooted nodular pile[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 2-3.
[6] WANG Kui-hua,LUO Yong-jian,WU Wen-bing,LV Shu-hui,WU Deng-hui. Calculation method for settlement of single pile considering
stress dispersion of pile end soil
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(3): 472-479.
[7] HU Xu-Feng, HUANG Min-Xiang, WANG Ting-Ting, CHEN Xin-Lei. Optimization of shortterm complex distribution network maintenance scheduling[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(3): 510-515.