Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (4): 698-705    DOI: 10.3785/j.issn.1008-973X.2025.04.005
    
Study on service safety of super-large-span tunnels considering combined defects of lining voids and thinning
Jianfei MA1(),Gangshuai JIA1,Bo JIANG1,2,Zheng CHEN3,Xiaokang LING4,Shaohui HE1,*()
1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
2. Infrastructure Inspection Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
3. School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China
4. China Water Resources Pearl River Planning, Surveying & Designing Limited Company, Guangzhou 510610, China
Download: HTML     PDF(1319KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The distribution law of lining defects in 19 high-speed railway tunnels was statistically analyzed, and the calculation method of surrounding rock pressure in tunnels with lining voids was modified. A numerical simulation was employed to analyze the combined defects’ impact on the internal forces and safety of super-large-span railway tunnels during their service period. Results show that combined defects of voids and thinning account for 39.3% of the statistical defects, making them the most frequent type in railway tunnels. The highest occurrence of combined defects is at the tunnel vault compared with other lining parts, with a frequency of 0.78. The surrounding rock pressure in the descending section of the void-affected region was replaced with a power function distribution, and a calculation method for the surrounding rock pressure in tunnels with voids was derived, which better reflects reality compared to the existing linear distribution. Combined defects cause significant variations in the internal forces and safety factors of super-large-span tunnel lining structures in both the defect-affected and influence zones, with the safety factor decreasing by up to 61.68%. Combined defects and lining degradation significantly impact the service safety of super-large-span tunnels, and the longer the service life, the more pronounced the effect on structural safety. Based on the minimum safety factors of 2.0, 2.4, and 2.8 for plain concrete, and 1.70, 2.04, and 2.38 for reinforced concrete, a safety evaluation and management standard for the linings of super-large-span railway tunnels with combined defects has been established.



Key wordstunnel engineering      lining defects      load structure method      combined defects      numerical simulation     
Received: 26 March 2024      Published: 25 April 2025
CLC:  U 455  
Fund:  中央高校基本科研业务费专项资金资助项目(2024YJS043);国家自然科学基金资助项目(12374443);国铁集团科研开发计划课题(2017G003-H).
Corresponding Authors: Shaohui HE     E-mail: majfncut@163.com;heshaohui1114@163.com
Cite this article:

Jianfei MA,Gangshuai JIA,Bo JIANG,Zheng CHEN,Xiaokang LING,Shaohui HE. Study on service safety of super-large-span tunnels considering combined defects of lining voids and thinning. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 698-705.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.04.005     OR     https://www.zjujournals.com/eng/Y2025/V59/I4/698


含空洞-减薄病害的超大跨隧道服役安全研究

统计19座高铁隧道衬砌病害的分布规律,修正含空洞隧道围岩压力计算方法,数值仿真分析组合病害对服役期超大跨铁路隧道内力和安全性的影响. 结果表明:空洞-减薄组合病害占统计病害的39.3%,是铁路隧道出现频率最高的病害类型;组合病害在拱顶处的出现频率最高,为0.78. 将空洞影响区域下降段的围岩压力替换为幂函数分布,推导出比现有线性分布方法更符合实际情况的含空洞隧道围岩压力计算方法. 组合病害导致超大跨隧道衬砌结构内力和安全系数在病害作用区和影响区剧烈变化,安全系数最大降低61.68%. 组合病害和衬砌劣化显著影响超大跨隧道服役安全性,服役时间越长,对结构安全性的影响越显著. 以素混凝土最小安全系数为2.0、2.4、2.8和钢筋混凝土最小安全系数为1.70、2.04、2.38为界限,建立超大跨铁路隧道含组合病害的衬砌安全评价分级和管理标准.


关键词: 隧道工程,  衬砌病害,  荷载结构法,  组合病害,  数值模拟 
Fig.1 Line for lining disease detection
Fig.2 Combined defects of lining voids and thinning
Fig.3 Distribution of combined defects of lining voids and thinning
Fig.4 Existing load calculation models
Fig.5 Surrounding rock pressure distribution of descending section
Fig.6 Correction model for surrounding rock pressure
Fig.7 Schematic diagram of combined defects model
工况分类病害
1-1无病害
2-1单一病害空洞
2-2单一病害减薄
3-1组合病害空洞-减薄
Tab.1 Calculation conditions of numerical model
材料E/GPaγ/(kN·m?3νc/kPa$\varphi _{\mathrm{i}} $/(°)
衬砌32.50025.00.2
凝灰岩0.72922.00.3137216.9
Tab.2 Mechanical parameters of lining and surrounding rock
Fig.8 Axial force of lining structures
Fig.9 Bending moment of lining structures
Fig.10 Safety factor of lining structures
Fig.11 Lining structural safety factor during service life
Fig.12 Lining safety factors at different defect locations
Fig.13 Lining safety factors at different defect curvatures
Fig.14 Lining safety factors at different defect thinning parameters
Fig.15 Lining safety state evaluation progress
等级素混凝土安全系数钢筋混凝土衬砌安全系数管理标准
<2.0<1.70采取措施
2.0~2.41.70~2.04加强检测
2.4~2.82.04~2.38加密检测
>2.8>2.38常规检测
Tab.3 Management standards for safety state evaluation
[1]   巩江峰, 王伟, 王芳, 等 截至2023年底中国铁路隧道情况统计及2023年新开通重点项目隧道情况介绍[J]. 隧道建设(中英文), 2024, 44 (2): 377- 392
GONG Jiangfeng, WANG Wei, WANG Fang, et al Statistics of China’s railway tunnels by the end of 2023 and overview of tunnels of key new projects in 2023[J]. Tunnel Construction, 2024, 44 (2): 377- 392
[2]   YE F, QIN N, LIANG X, et al Analyses of the defects in highway tunnels in China[J]. Tunnelling and Underground Space Technology, 2021, 107: 103658
doi: 10.1016/j.tust.2020.103658
[3]   LI S, ZHANG Y, FENG S Void detection and void defect control methods for large-scale immersed steel shell–concrete tunnels[J]. Tunnelling and Underground Space Technology, 2023, 134: 105006
doi: 10.1016/j.tust.2023.105006
[4]   ZI H, DING Z, JI X, et al Effect of voids on the seismic vulnerability of mountain tunnels[J]. Soil Dynamics and Earthquake Engineering, 2021, 148: 106833
doi: 10.1016/j.soildyn.2021.106833
[5]   HAN W, JIANG Y, WANG G, et al Review of health inspection and reinforcement design for typical tunnel quality defects of voids and insufficient lining thickness[J]. Tunnelling and Underground Space Technology, 2023, 137: 105110
doi: 10.1016/j.tust.2023.105110
[6]   张顶立, 张素磊, 房倩, 等 铁路运营隧道衬砌背后接触状态及其分析[J]. 岩石力学与工程学报, 2013, 32 (2): 217- 224
ZHANG Dingli, ZHANG Sulei, FANG Qian, et al Study of contact state behind tunnel lining in process of railway operation and its analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (2): 217- 224
doi: 10.3969/j.issn.1000-6915.2013.02.001
[7]   张素磊, 齐晓强, 刘昌, 等 公路隧道衬砌背后空洞分布特征及其对衬砌结构的影响[J]. 建筑科学与工程学报, 2020, 37 (2): 62- 70
ZHANG Sulei, QI Xiaoqiang, LIU Chang, et al Distribution characteristics of voids behind lining of highway tunnel and its influence on lining structure[J]. Journal of Architecture and Civil Engineering, 2020, 37 (2): 62- 70
[8]   HUANG Z, ZHANG W, ZHANG J, et al Statistics and probability characteristics of typical surface defects of subway tunnels[J]. Journal of Performance of Constructed Facilities, 2022, 36 (1): 04021118
doi: 10.1061/(ASCE)CF.1943-5509.0001699
[9]   殷洪波, 刘正初, 郭永发 组合缺陷影响下衬砌结构受力特征分析[J]. 铁道科学与工程学报, 2020, 17 (8): 2037- 2045
YIN Hongbo, LIU Zhengchu, GUO Yongfa Analysis of stress characteristics of lining structure under the influence of combined defects[J]. Journal of Railway Science and Engineering, 2020, 17 (8): 2037- 2045
[10]   黄锋, 刘星辰, 金成昊, 等 衬砌背后空洞对隧道结构安全影响的模型试验研究[J]. 重庆交通大学学报: 自然科学版, 2020, 39 (3): 69- 77
HUANG Feng, LIU Xingchen, JIN Chenghao, et al Model test of influence of cavities behind lining on the safety of tunnel[J]. Journal of Chongqing Jiaotong University: Natural Science, 2020, 39 (3): 69- 77
[11]   王述红, 王鹏宇, 刘宇, 等 不同位置空洞条件下隧道的破坏模式试验研究[J]. 东北大学学报: 自然科学版, 2020, 41 (6): 863- 869
WANG Shuhong, WANG Pengyu, LIU Yu, et al Experimental study on failure mode of tunnel model containing cavity in different locations[J]. Journal of Northeastern University: Natural Science, 2020, 41 (6): 863- 869
[12]   YASUDA N, TSUKADA K, ASAKURA T Three-dimensional seismic response of a cylindrical tunnel with voids behind the lining[J]. Tunnelling and Underground Space Technology, 2019, 84: 399- 412
doi: 10.1016/j.tust.2018.11.026
[13]   XIN C L, WANG Z Z, GAO B Shaking table tests on seismic response and damage mode of tunnel linings in diverse tunnel-void interaction states[J]. Tunnelling and Underground Space Technology, 2018, 77: 295- 304
doi: 10.1016/j.tust.2018.03.010
[14]   郑艾辰, 向晋扬, 黄锋, 等 空洞对隧道结构安全影响试验与模拟[J]. 中国安全科学学报, 2022, 32 (5): 119- 126
ZHENG Aichen, XIANG Jinyang, HUANG Feng, et al Test and simulation of influence of voids on tunnel structure safety[J]. China Safety Science Journal, 2022, 32 (5): 119- 126
[15]   赵平, 徐锋, 王华东, 等 隧道衬砌厚度对结构安全性及裂缝演化规律影响研究[J]. 工业建筑, 2023, 53 (11): 11- 20
ZHAO Ping, XU Feng, WANG Huadong, et al Influence of tunnel lining thickness on structural safety and evolution laws of crack[J]. Industrial Construction, 2023, 53 (11): 11- 20
[16]   张旭, 成鹤, 许有俊, 等 连拱隧道衬砌厚度不足对结构安全性的影响研究[J]. 隧道建设(中英文), 2020, 40 (11): 1586- 1593
ZHANG Xu, CHENG He, XU Youjun, et al Influence of insufficient lining thickness on structural safety of double-arch tunnel[J]. Tunnel Construction, 2020, 40 (11): 1586- 1593
[17]   MA J, HE S, LIU X, et al Research and optimization of tunnel construction scheme for super-large span high-speed railway tunnel in poor tuff strata[J]. Applied Rheology, 2023, 33 (1): 20230101
doi: 10.1515/arh-2023-0101
[18]   《中国公路学报》编辑部. 中国交通隧道工程学术研究综述·2022 [J]. 中国公路学报, 2022, 35(4): 1–40.
Editiorial Department of China Journal of Highway and Transport. Review on China’s traffic tunnel engineering research: 2022 [J]. China Journal of Highway and Transport , 2022, 35(4): 1–40.
[19]   杨艳青, 高永涛, 贺少辉, 等 运营铁路隧道衬砌安全性模糊模式识别评价方法研究[J]. 岩石力学与工程学报, 2014, 33 (Suppl.2): 3903- 3910
YANG Yanqing, GAO Yonghui, HE Shaohui, et al Safety evaluation of railway tunnel lining by fuzzy pattern recognition[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (Suppl.2): 3903- 3910
[20]   朱桂富, 叶灿铙, 王健伟, 等 普速铁路单线直墙式隧道衬砌厚度不足评价标准[J]. 铁道建筑, 2023, 63 (9): 117- 120
ZHU Guifu, YE Cannao, WANG Jianwei, et al Evaluation criteria for insufficient thickness of single-track straight-wall lining of conventional railway tunnel[J]. Railway Engineering, 2023, 63 (9): 117- 120
doi: 10.3969/j.issn.1003-1995.2023.09.24
[21]   郭新新, 刘锦超, 汪波, 等 既有裂缝、空洞病害隧道爆破振动安全控制标准[J]. 爆炸与冲击, 2020, 40 (11): 146- 156
GUO Xinxin, LIU Jinchao, WANG Bo, et al Safety control standard of blasting vibration for tunnels with existing cracks and cavities[J]. Explosion and Shock Waves, 2020, 40 (11): 146- 156
doi: 10.11883/bzycj-2019-0315
[22]   吴军武, 郑荣国, 涂高鹏, 等 基于结构安全的衬砌背后空洞评定标准优化研究[J]. 现代隧道技术, 2022, 59 (Suppl.1): 82- 89
WU Junwu, ZHENG Rongguo, TU Gaopeng, et al Study on optimization of evaluation standard of cavity behind lining based on structural safety[J]. Modern Tunnelling Technology, 2022, 59 (Suppl.1): 82- 89
[23]   王勇. 铁路隧道状态综合评价方法及检修周期策略研究[D]. 北京: 中国铁道科学研究院, 2023: 1–148.
WANG Yong. Research on comprehensive evaluation method of railway tunnel condition and maintenance cycle strategy [D]. Beijing: China Academy of Railway Sciences Corporation Limited, 2023: 1–148.
[24]   LEUNG C, MEGUID M A An experimental study of the effect of local contact loss on the earth pressure distribution on existing tunnel linings[J]. Tunnelling and Underground Space Technology, 2011, 26 (1): 139- 145
doi: 10.1016/j.tust.2010.08.003
[25]   应国刚, 张顶立, 陈立平, 等 荷载结构模型在拱顶空洞存在情况下的修正[J]. 土木工程学报, 2015, 48 (Suppl.1): 181- 185
YING Guogang, ZHANG Dingli, CHEN Liping, et al Amendment of load-structure model with voids behind tunnel lining at vault[J]. China Civil Engineering Journal, 2015, 48 (Suppl.1): 181- 185
[26]   中铁二院工程集团有限责任公司. 铁路隧道设计规范: TB 10003—2016 [S]. 北京: 中国铁道出版社, 2017.
[27]   王大鹏, 王景春, 孙丽娟, 等 衬砌-围岩时效劣化影响下开裂衬砌服役可靠性分析[J]. 铁道科学与工程学报, 2024, 21 (6): 2535- 2546
WANG Dapeng, WANG Jingchun, SUN Lijuan, et al Service reliability analysis of cracked lining under the influence of lining-surrounding rock age deterioration[J]. Journal of Railway Science and Engineering, 2024, 21 (6): 2535- 2546
[28]   崔光耀, 麻建飞, 王雪来, 等 季冻区破碎围岩隧道冻胀力计算方法及工程应用[J]. 东南大学学报: 自然科学版, 2021, 51 (2): 294- 299
CUI Guangyao, MA Jianfei, WANG Xuelai, et al Calculation method for frost heave force of tunnel with broken surrounding rock in seasonal frozen area and its engineering application[J]. Journal of Southeast University: Natural Science Edition, 2021, 51 (2): 294- 299
[1] Sijian ZHOU,Di ZHANG,Jian ZHOU,Ying LI,Xiaonan GONG. Deformation control of shield tunnel operation based on tunnel jet system method[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1427-1435.
[2] Mengtian WANG,Tai JIN,Yaolong LIU. Numerical analysis of tiltrotor/wing aerodynamic characteristics in continuous conversion mode[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 857-866.
[3] Qing-lu MA,Jia-ping LU,Xiao-yao TANG,Xue-feng DUAN. Improved YOLOv5s flame and smoke detection method in road tunnels[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 784-794.
[4] Jun-cheng LIU,Yong TAN,Xiang-hua SONG,Dong-dong FAN,Tian-ren LIU. Effects of through-wall leaking during excavation in water-rich sand on lateral wall deflections and surrounding environment[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 530-541.
[5] Yi-cun WANG,Chang-xiao SHAO,Tai JIN,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Representation of combustion thermochemical manifolds via multi-gate mixture of experts[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2401-2411.
[6] Ting-wei JI,Xu ZHA,Fang-fang XIE,Yu-si WU,Xin-shuai ZHANG,Yi-yang JIANG,Chang-ping DU,Yao ZHENG. Multi-fidelity aerodynamic modeling method of aerospace vehicles based on Gaussian process regression[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2314-2324.
[7] Guo-peng LYU,Nan JIANG,Chuan-bo ZHOU,Hai-bo LI,Ying-kang YAO,Xu ZHANG. Surface explosion induced crack extension mechanism of reinforced concrete pipeline[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1704-1713.
[8] Jun SHI,Ying-ning QIU,Yi ZHOU. Direct numerical simulation of temporally evolving fractal-generated turbulence[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1606-1621.
[9] Gen LI,Tong-chun HAN,Jun-yang WU,Yu ZHANG. Coupled analysis on surface runoff and soil water movement by finite volume method[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 947-955.
[10] Meng-fan LIU,Gang-feng WU,Ke-feng ZHANG,Ping DONG. 2D non-cohesive earthen embankment breach model based on linear erosion formula[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 569-578.
[11] Shuai-ling GAO,Jun-qiang XIA,Bo-liang DONG,Mei-rong ZHOU,Jing-ming HOU. Mathematical model for urban flooding with effect of drainage of street inlets[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 590-597.
[12] Dong-jiao WANG,Chang-run CHEN,Kun LIU,Shou-qiang QIU. Investigation on parametrically excited motions of multiple degrees of freedom wave energy converter[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2496-2506.
[13] Yi-cun WANG,Jiang-kuan XING,Kun LUO,Hai-ou WANG,Jian-ren FAN. Solving combustion chemical differential equations via physics-informed neural network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2084-2092.
[14] Jun ZHANG,Yu-min CUI,Hong-zhou HE. Numerical calculation model on discrete droplet deformation in liquid-liquid system under electric field[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1391-1398.
[15] Jia-hao REN,Hai-ou WANG,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Lower-dimensional approximation models of tangential strain rate of turbulent flames[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1128-1134.