Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (1): 100-110    DOI: 10.3785/j.issn.1008-973X.2023.01.011
    
Damage identification of concrete structure based on WPT-SVD and GA-BPNN
Li-zhao DAI(),Wei CAO,Shan-chang YI,Lei WANG*()
School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China
Download: HTML     PDF(2787KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A damage detection method based on wavelet packet-singular value decomposition (WPT-SVD) and BP neural network model optimized by genetic algorithm (GA-BPNN) was proposed aiming at the problem of damage discretization of concrete structures based on piezoelectric wave method. The damage characteristics of signal were deeply explored for structural cracking in time-frequency domain. The relationship between the signal characteristics and the damage condition was built, which can identify the damage location and the damage degree of structures. The damage signal was measured by surface-mounted piezoceramic transducer on the concrete structures. The WPT was employed to obtain the multi-dimensional time-frequency matrix. Then SVD was used to reduce the dimension of time-frequency matrix under different damage states and construct feature vectors with high damage sensitivity. The GA-BPNN model with auto-adaptive learning was established, and the identification of structural damage was realized. The experimental results show that the singular value of piezoelectric signal can be used as the characteristic parameter of damage. The singular value of the main spectrum decreases with the development of damage. There is a correspondence of three stages between the normalized singular value vector distance and the damage. The GA-BPNN better fitted the correlation between the damage signal characteristics and the damage compared with the BPNN model. The identification was more stable, and the accuracy was significantly improved. The identification accuracy of damage location and damage degree of concrete structures were 95.19% and 94.47%, respectively.



Key wordsconcrete structure      damage detection      piezoelectric wave method      singular value decomposition      neural network     
Received: 13 February 2022      Published: 17 January 2023
CLC:  TU 375  
Fund:  国家重点研发计划资助项目(2021YFB2600900);国家自然科学基金资助项目(52278140, 52008035);湖南省自然科学基金资助项目(2020JJ1006, 2021JJ40574);南方地区桥梁长期性能提升技术国家地方联合工程实验室(长沙理工大学)资助项目(22KE02);长沙理工大学专业学位研究生实践创新与创业能力提升项目(SJCX202028)
Corresponding Authors: Lei WANG     E-mail: lizhaod@csust.edu.cn;leiwang@csust.edu.cn
Cite this article:

Li-zhao DAI,Wei CAO,Shan-chang YI,Lei WANG. Damage identification of concrete structure based on WPT-SVD and GA-BPNN. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 100-110.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.01.011     OR     https://www.zjujournals.com/eng/Y2023/V57/I1/100


基于WPT-SVD和GA-BPNN的混凝土结构损伤识别

针对基于压电波动法检测混凝土结构损伤离散性大的问题,提出基于小波包-奇异值分解(WPT-SVD)和遗传算法优化的BP神经网络 (GA-BPNN) 模型的损伤识别方法. 该方法深度挖掘结构开裂损伤信号时频域变化特征,构建信号特征与损伤的对应关系,可以有效地识别结构损伤位置和程度. 在混凝土结构表面粘贴压电传感器测得损伤信号,对损伤信号进行WPT分解,以获得多维时频矩阵. 采用SVD对不同损伤状态下的时频矩阵进行降维,构建具有较高损伤敏感性的特征向量. 建立具有自适应学习能力的GA-BPNN,实现结构的损伤识别. 试验验证表明,压电信号奇异值可以作为损伤特征参量,主要频段的奇异值随着损伤的发展而下降,归一化奇异值向量距与损伤情况呈现3阶段对应关系. GA-BPNN较BPNN能够更好地表征信号特征与损伤间的关联性,识别结果更加稳定且精确度高,结构损伤位置和程度的识别精确度分别达到95.19%和94.47%.


关键词: 混凝土结构,  损伤识别,  压电波动法,  奇异值分解,  神经网络 
Fig.1 Damage identification frame of concrete structures based on WPT-SVD and GA-BPNN
Fig.2 Reinforcement and size of specimens
Fig.3 Loading diagram of concrete beams and arrangement of transducers
ρ/(g·cm?3) ε k tan δ tc/℃ Qm
7.6 3 400 0.76 1.3 250 75
Tab.1 Main performance parameters of piezoelectric sensor
Fig.4 Time history and frequency history of excitation signal
Fig.5 Load-deflection curves of specimens
Fig.6 Crack distribution of B1 under ultimate state
Fig.7 Signal time history of B1 in segment Ⅱ
Fig.8 Signal frequency history of B1 in segment Ⅱ
Fig.9 Signal time history of B1 under different loads
Fig.10 Signal time history of concrete beams in segment Ⅳ
Fig.11 Singular value vectors of signal at different load levels
Fig.12 Relation curves among load, deflection and normalization singular value vector distance
损伤情况 模型 数据集 R2 MSE
损伤位置 BPNN 训练集 0.890 9 9.222×10?3
BPNN 测试集 0.860 5 1.209×10?2
GA-BPNN 训练集 0.974 3 7.863×10?4
GA-BPNN 测试集 0.950 6 2.938×10?3
损伤程度 BPNN 训练集 0.501 4 0.101 2
BPNN 测试集 0.482 4 0.115 3
GA-BPNN 训练集 0.792 6 0.041 5
GA-BPNN 测试集 0.827 9 0.060 5
Tab.2 Evaluation index of network
Fig.13 Damage identification of concrete structures
[1]   梁超锋, 刘铁军, 肖建庄, 等 再生混凝土悬臂梁阻尼性能与损伤关系的试验研究[J]. 土木工程学报, 2016, 49 (7): 100- 106
LIANG Chao-feng, LIU Tie-jun, XIAO Jian-zhuang, et al Experimental study on relationship between damping capacity and damage degree of recycled concrete cantilever beam[J]. China Civil Engineering Journal, 2016, 49 (7): 100- 106
doi: 10.15951/j.tmgcxb.2016.07.009
[2]   杨振伟, 周广东, 伊廷华, 等 基于分级免疫萤火虫算法的桥梁振动传感器优化布置研究[J]. 工程力学, 2019, 36 (3): 63- 70
YANG Zhen-wei, ZHOU Guang-dong, YI Ting-hua, et al Optimal vibration sensor placement for bridges using gradation-immune firefly algorithm[J]. Engineering Mechanics, 2019, 36 (3): 63- 70
[3]   李宏男, 高东伟, 伊廷华 土木工程结构健康监测系统的研究状况与进展[J]. 力学进展, 2008, 38 (2): 151- 166
LI Hong-nan, GAO Dong-wei, YI Ting-hua Research status and progress of structural health monitoring system in civil engineering[J]. Advances in Mechanics, 2008, 38 (2): 151- 166
doi: 10.3321/j.issn:1000-0992.2008.02.002
[4]   MITRA M, GOPALAKRISHNAN S Guided wave based structural health monitoring: a review[J]. Smart Materials and Structures, 2016, 25 (5): 053001
doi: 10.1088/0964-1726/25/5/053001
[5]   LIM Y Y, KWONG K Z, LIEW W Y H, et al Non-destructive concrete strength evaluation using smart piezoelectric transducer: a comparative study[J]. Smart Materials and Structures, 2016, 25 (8): 085021
doi: 10.1088/0964-1726/25/8/085021
[6]   DUMOULIN C, KARAISKOS G, SENER J Y, et al Online monitoring of cracking in concrete structures using embedded piezoelectric transducers[J]. Smart Materials and Structures, 2014, 23 (11): 115016
doi: 10.1088/0964-1726/23/11/115016
[7]   TAGHAVIPOUR S, KHARKOVSKY S, KANG W H, et al Detection and monitoring of flexural cracks in reinforced concrete beams using mounted smart aggregate transducers[J]. Smart Materials and Structures, 2017, 26 (10): 104009
doi: 10.1088/1361-665X/aa849a
[8]   HOWSER R, MOSLEHY Y, GU H, et al Smart-aggregate-based damage detection of fiber-reinforced-polymer-strengthened columns under reversed cyclic loading[J]. Smart Materials and Structures, 2011, 20 (7): 075014
doi: 10.1088/0964-1726/20/7/075014
[9]   MICHAELS J E, MICHAELS T E Detection of structural damage from the local temporal coherence of diffuse ultrasonic signals[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52 (10): 1769- 1782
doi: 10.1109/TUFFC.2005.1561631
[10]   王彬文, 吕帅帅, 杨宇 基于能量图谱和孪生网络的导波损伤诊断方法[J]. 振动. 测试与诊断, 2021, 41 (1): 182- 189
WANG Bin-wen, LV Shuai-shuai, YANG Yu Guided wave damage diagnosis method based on energy spectrum and twin network[J]. Journal of Vibration, Measurement and Diagnosis, 2021, 41 (1): 182- 189
[11]   GUO T, WU L P, WANG C J, et al Damage detection in a novel deep-learning framework: a robust method for feature extraction[J]. Structural Health Monitoring, 2020, 19 (2): 424- 442
doi: 10.1177/1475921719846051
[12]   WANG F R, CHEN Z, SONG G B Smart crawfish: a concept of underwater multi-bolt looseness identification using entropy-enhanced active sensing and ensemble learning[J]. Mechanical Systems and Signal Processing, 2021, 149: 107186
doi: 10.1016/j.ymssp.2020.107186
[13]   胡俊亮, 钟继卫, 黄仕平, 等 基于可靠度指标的桥梁安全评估分级方法[J]. 哈尔滨工程大学学报, 2016, 37 (4): 550- 555
HU Jun-liang, ZHONG Ji-wei, HUANG Shi-ping, et al A method for bridge safety assessment based on reliability index[J]. Journal of Harbin Engineering University, 2016, 37 (4): 550- 555
doi: 10.11990/jheu.201507035
[14]   MOJTABA R, ALI H Structural damage identification through sensitivity-based finite element model updating and wavelet packet transform component energy[J]. Structures, 2021, 33: 4857- 4870
doi: 10.1016/j.istruc.2021.07.030
[15]   陈鑫, 朱劲松, 林阳子, 等 基于导波多点散射的在役拱桥吊杆腐蚀损伤识别[J]. 振动与冲击, 2021, 40 (19): 295- 301
CHEN Xin, ZHU Jin-song, LIN Yang-zi, et al Corrosion damage identification of suspenders of arch bridges in service based on guided wave multi-point scattering[J]. Journal of Vibration and Shock, 2021, 40 (19): 295- 301
doi: 10.13465/j.cnki.jvs.2021.19.037
[16]   陈敏. 火灾后混凝土损伤超声诊断方法及应用研究[D]. 长沙: 中南大学, 2008.
CHEN Min. Study on application and method of diagnosing flaw in concrete structure after fire using ultrasonic wave[D]. Changsha: Central South University, 2008.
[17]   李富强, 刘国华, 吴志根 基于双谱和奇异值分解的结构损伤试验[J]. 浙江大学学报: 工学版, 2012, 46 (10): 1872- 1879
LI Fu-qiang, LIU Guo-hua, WU Zhi-gen Experimental study of structural damage based on bispectral analysis and singular value decomposition[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (10): 1872- 1879
doi: 10.3785/j.issn.1008-973X.2012.10.021
[18]   ZHOU L, ZHENG Y, HUO L, et al Monitoring of bending stiffness of BFRP reinforced concrete beams using piezoceramic transducer enabled active sensing[J]. Smart Materials and Structures, 2020, 29 (10): 105012
doi: 10.1088/1361-665X/ab936d
[19]   ZHOU L, ZHENG Y, SONG G, et al Identification of the structural damage mechanism of BFRP bars reinforced concrete beams using smart transducers based on time reversal method[J]. Construction and Building Materials, 2019, 220 (1): 615- 627
[20]   孙威, 阎石, 焦莉, 等 基于压电波动法的混凝土裂缝损伤监测技术[J]. 工程力学, 2013, 30 (Supple.1): 206- 211
SUN Wei, YAN Shi, JIAO Li, et al Monitoring technology for crack damage of concrete structure based on piezoelectric wave method[J]. Engineering Mechanics, 2013, 30 (Supple.1): 206- 211
doi: 10.6052/j.issn.1000-4750.2012.04.S058
[21]   钱骥, 陈鑫, 蒋永, 等 基于导波能量谱的钢绞线腐蚀损伤识别研究[J]. 振动与冲击, 2018, 37 (20): 115- 121
QIAN Ji, CHEN Xin, JIANG Yong, et al Steel strands corrosion identification based on guide wave energy spectrum[J]. Journal of Vibration and Shock, 2018, 37 (20): 115- 121
doi: 10.13465/j.cnki.jvs.2018.20.018
[22]   赵学智, 叶邦彦, 陈统坚 基于小波-奇异值分解差分谱的弱故障特征提取方法[J]. 机械工程学报, 2012, 48 (7): 37- 48
ZHAO Xue-zhi, YE Bang-yan, CHEN Tong-jian Extraction method of faint fault feature based on wavelet-SVD difference spectrum[J]. Journal of Mechanical Engineering, 2012, 48 (7): 37- 48
doi: 10.3901/JME.2012.07.037
[23]   阳洋, 梁晋秋, 袁爱鹏, 等 基于桥梁单元刚度损伤识别的新型间接量测方法研究[J]. 中国公路学报, 2021, 34 (2): 188- 198
YANG Yang, LIANG Jin-qiu, YUAN Ai-peng, et al Bridge element bending stiffness damage identification based on new indirect measurement method[J]. Chinese Journal of Highway and Transport, 2021, 34 (2): 188- 198
doi: 10.3969/j.issn.1001-7372.2021.02.009
[24]   孙威. 利用压电陶瓷的智能混凝土结构健康监测技术[D]. 大连: 大连理工大学, 2009.
SUN Wei. Health monitoring technology for smart concrete structures using piezoelectric ceramic [D]. Dalian: Dalian University of Technology, 2009.
[1] Hua HUANG,Qiu-ge ZHAO,Zai-xing HE,Jia-ran LI. Contour error control of two-axis system based on LSTM and Newton iteration[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 10-20.
[2] Zheng-yin YANG,Jian HU,Jian-yong YAO,Ying-zhe SHA,Qiu-yu SONG. Fault-tolerant control based on adaptive neural network sliding mode observer[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1656-1665.
[3] Jun HE,Ya-sheng ZHANG,Can-bin YIN. Operating modes identification of spaceborne SAR based on deep learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1676-1684.
[4] Wei-hong NIU,Xiao-feng HUANG,Wei QI,Hai-bing YIN,Cheng-gang YAN. Fast stepwise all zero block detection algorithm for H.266/VVC[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1285-1293, 1319.
[5] Ren-peng MO,Xiao-sheng SI,Tian-mei LI,Xu ZHU. Bearing life prediction based on multi-scale features and attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1447-1456.
[6] Zhu-peng WEN,Jie CHEN,Lian-hua LIU,Ling-ling JIAO. Fault diagnosis of wind power gearbox based on wavelet transform and improved CNN[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1212-1219.
[7] Jun-qi YU,Si-yuan YANG,An-jun ZHAO,Zhi-kun GAO. Hybrid prediction model of building energy consumption based on neural network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1220-1231.
[8] Li HE,Shan-min PANG. Face reconstruction from voice based on age-supervised learning and face prior information[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1006-1016.
[9] Yun-hao WANG,Ming-hui SUN,Yi XIN,Bo-xuan ZHANG. Robot tactile recognition system based on piezoelectric film sensor[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 702-710.
[10] Ze-kang WU,Shan ZHAO,Hong-wei LI,Yi-rui JIANG. Spatial global context information network for semantic segmentation of remote sensing image[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 795-802.
[11] Yang-zhao CHEN,Wei-na YUAN. Deep learning aided multi-user detection for up-link grant-free NOMA[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 816-822.
[12] Ke-wen ZHANG,Bai-song PAN. Control design of spacecraft autonomous rendezvous using nonlinear models with uncertainty[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 833-842.
[13] Ruo-ran CHENG,Xiao-li ZHAO,Hao-jun ZHOU,Han-chen YE. Review of Chinese font style transfer research based on deep learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 510-519, 530.
[14] Guang-long LI,De-rong SHEN,Tie-zheng NIE,Yue KOU. Learning query optimization method based on multi model outside database[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 288-296.
[15] Ting WANG,Xiao-fei ZHU,Gu TANG. Knowledge-enhanced graph convolutional neural networks for text classification[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 322-328.