Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (7): 1285-1293, 1319    DOI: 10.3785/j.issn.1008-973X.2022.07.003
    
Fast stepwise all zero block detection algorithm for H.266/VVC
Wei-hong NIU1(),Xiao-feng HUANG1,3,Wei QI1,Hai-bing YIN1,*(),Cheng-gang YAN2
1. College of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
2. College of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
3. Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China
Download: HTML     PDF(1177KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A fast algorithm for all zero block detection was proposed in order to reduce the computational complexity. A fixed threshold was derived based on the hard decision quantization formula in order to detect genuine all zero blocks. Pseudo all zero blocks were further detected by the adaptive threshold related to the transform block size and quantization parameter (QP). The decision was made based on the fully connected neural network (FCNN) for the remaining blocks by extracting eight features that were closely related to the result of quantization. The experimental results showed that the proposed fast algorithm achieved up to 7.382% and 7.237% coding complexity saving under Low Delay B and Random Access configurations with only 0.458% and 0.575% performance loss on average, respectively.



Key wordsall zero block      hard decision quantization      quantization parameter      fully connected neural network (FCNN)     
Received: 07 July 2021      Published: 26 July 2022
CLC:  TP 391  
Fund:  国家自然科学基金资助项目(61901150,61572449,61972123);浙江省自然科学基金资助项目(LQ19F010011)
Corresponding Authors: Hai-bing YIN     E-mail: wh_niu@hdu.edu.cn;yhb@hdu.edu.cn
Cite this article:

Wei-hong NIU,Xiao-feng HUANG,Wei QI,Hai-bing YIN,Cheng-gang YAN. Fast stepwise all zero block detection algorithm for H.266/VVC. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1285-1293, 1319.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.07.003     OR     https://www.zjujournals.com/eng/Y2022/V56/I7/1285


H.266/VVC分步全零块判决快速算法

为了减少编码计算复杂度,提出分步全零块判决快速算法. 基于硬决策量化公式推导固定阈值,判决出真全零块. 通过与变换块尺寸和量化参数(QP)相关的自适应阈值,判决出伪全零块. 通过提取出8个与量化结果密切相关的特征,基于全连接神经网络(FCNN)对剩余未判决的块进行最后判决. 实验结果表明,提出的分步全零块判决快速算法在Low Delay B和Random Access配置下,在性能平均损失分别仅为0.458%和0.575%的情况下,分别平均减少了7.382%和7.237%的编码复杂度.


关键词: 全零块,  硬决策量化,  量化参数,  全连接神经网络(FCNN) 
Fig.1 Frame diagram of stepwise all zero block detection
Fig.2 Distribution of G-AZB、P-AZB and NAZB
M $ \varepsilon $/% $ \eta $/%
SVM FCNN
64 87.17 95.43 3.535
128 83.79 91.65 3.535
256 82.97 93.28 3.535
512 80.62 93.43 3.535
Tab.1 Comparison of support vector machine and fully connected neural network algorithm
Fig.3 Structure of fully connected neural network
Fig.4 Distribution diagram of pre-quantization coefficients
Fig.5 Mean of pre-quantization coefficients ratio
Fig.6 Position annotation of transformed coefficients
Fig.7 Mean of energy ratio in low frequency domain
Fig.8 Mean value of syntax element (SIG)
量化块 M 系数级特征 TU级特征 上下文级特征
$ {n_0} $ $ {n_1} $ $ \;\beta $ SIG( $ {P_1} $) SIG( $ {P_2} $) SIG( $ {P_3} $) CSBF CBF
AZB 64 0.9258 0.0742 0.1537 0.3725 0.3323 0.3546 0.0789 0.2932
AZB 128 0.9383 0.0617 0.1051 0.3729 0.3516 0.3621 0.0826 0.3922
AZB 256 0.9488 0.0512 0.0677 0.3870 0.3586 0.3783 0.0939 0.4193
AZB 512 0.9530 0.0470 0.0426 0.3946 0.3622 0.3825 0.0948 0.4244
NAZB 64 0.8350 0.1337 0.2734 0.5499 0.4958 0.5371 0.1340 0.6625
NAZB 128 0.8602 0.1141 0.2046 0.5467 0.4944 0.5284 0.1267 0.6523
NAZB 256 0.8696 0.1088 0.1473 0.5334 0.4891 0.5209 0.1235 0.6200
NAZB 512 0.8725 0.1061 0.1006 0.5323 0.4879 0.5155 0.1200 0.5648
Tab.2 Comparison of different features between AZB and NAZB
类别 文献[14]方法 文献[15]方法 文献[16]方法 本文算法
$ \vartriangle {T_{{\text{Enc}}}} $/% BD-Rate/% $ \vartriangle {T_{{\text{Enc}}}} $/% BD-Rate/% $ \vartriangle {T_{{\text{Enc}}}} $/% BD-Rate/% $ \vartriangle {T_{{\text{Enc}}}} $/% BD-Rate/%
B 5.02 1.86 4.76 1.56 5.82 1.45 9.15 0.62
C 4.91 1.75 4.06 1.59 4.37 1.64 7.06 0.51
D 4.82 1.82 4.47 1.62 4.42 1.31 6.91 0.40
E 4.89 1.82 3.64 1.52 4.26 1.33 6.66 0.41
F 4.81 1.80 4.37 1.54 4.91 1.22 7.13 0.35
平均值 4.890 1.810 4.260 1.566 4.756 1.390 7.382 0.458
Tab.3 Coding performance comparison in LDB configuration
类别 文献[14]方法 文献[15]方法 文献[16]方法 本文算法
$ \vartriangle {T_{{\text{Enc}}}} $/% BD-Rate/% $ \vartriangle {T_{{\text{Enc}}}} $/% BD-Rate/% $ \vartriangle {T_{{\text{Enc}}}} $/% BD-Rate/% $ \vartriangle {T_{{\text{Enc}}}} $/% BD-Rate/%
A1 5.92 1.98 6.18 1.34 6.90 1.37 8.90 0.59
A2 5.67 1.82 5.45 1.45 6.21 1.37 9.15 0.53
B 4.48 1.89 4.17 1.53 4.33 1.43 6.54 0.58
C 4.33 1.73 3.93 1.56 4.19 1.75 6.97 0.61
D 4.36 1.82 4.36 1.55 4.09 1.59 6.14 0.52
F 3.13 1.87 2.90 1.53 3.08 1.51 5.72 0.62
平均值 4.648 1.852 4.498 1.493 4.800 1.503 7.237 0.575
Tab.4 Coding performance comparison in RA configuration
类别 文献[14]方法 文献[15]方法 文献[16]方法 本文算法
FNR FPR FNR FPR FNR FPR FNR FPR
B 0.333 0.101 0.081 0.090 0.082 0.076 0.043 0.040
C 0.388 0.111 0.089 0.087 0.102 0.090 0.060 0.051
D 0.426 0.116 0.084 0.092 0.080 0.110 0.040 0.078
E 0.481 0.096 0.098 0.084 0.101 0.109 0.066 0.073
F 0.469 0.099 0.097 0.089 0.087 0.087 0.074 0.061
平均值 0.419 0.105 0.090 0.088 0.090 0.094 0.057 0.061
Tab.5 Detection accuracy comparison in LDB configuration
类别 文献[14]方法 文献[15]方法 文献[16]方法 本文算法
FNR FPR FNR FPR FNR FPR FNR FPR
A1 0.457 0.108 0.093 0.109 0.105 0.094 0.071 0.076
A2 0.355 0.105 0.096 0.110 0.098 0.104 0.074 0.078
B 0.508 0.115 0.107 0.100 0.087 0.089 0.053 0.071
C 0.456 0.124 0.108 0.103 0.086 0.077 0.067 0.052
D 0.536 0.099 0.090 0.105 0.083 0.086 0.048 0.063
F 0.655 0.105 0.088 0.087 0.095 0.097 0.057 0.067
平均值 0.495 0.109 0.097 0.102 0.092 0.091 0.062 0.068
Tab.6 Detection accuracy comparison in RA configuration
[1]   BROSS B, WANG Y K, YE Y, et al Overview of the versatile video coding (VVC) standard and its applications[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31 (10): 3736- 3764
doi: 10.1109/TCSVT.2021.3101953
[2]   SULLIVAN G J, OHM J R, HAN W J, et al Overview of the high efficiency video coding (HEVC) standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22 (12): 1649- 1668
doi: 10.1109/TCSVT.2012.2221191
[3]   ZHANG Z B, ZHAO X, LI X, et al. Fast adaptive multiple transform for versatile video coding [C]// 2019 Data Compression Conference. Utah: IEEE, 2019: 63-72.
[4]   HONG Z, LIN J C, JIANG D, et al. Improve the efficiency of low frequency non-separable secondary transform based on implicit multiple transform selection [C]// 2019 International Conference on Artificial Intelligence and Advanced Manufacturing. Dublin: IEEE, 2019: 148-151.
[5]   CHEN J, YE Y, KIM S. Algorithm description for versatile video coding and test model 10 (VTM 10.0) [EB/OL]. (2020-10-10) [2021-07-03]. http://phenix.it-sudparis.eu/jvet/index.php/JVET-S2002.doc.
[6]   SULLIVAN G. Adaptive quantization encoding technique using an equal expected-value rule [EB/OL]. (2005-01-13) [2021-07-03]. https://www.itu.int/wftp3/av-arch/jvt-site/2005_01_HongKong/JVT-N011.doc.
[7]   WEN J T, LUTTRELL M, VILLASENOR J Trellis-based RD optimal quantization in H.263+[J]. IEEE Transactions on Image Processing, 2000, 9 (8): 1431- 1434
doi: 10.1109/83.855437
[8]   KARCZEWICZ M, YE Y, CHONG I. Rate distortion optimized quantization [EB/OL]. (2008-01-09) [2021-07-03]. https://www.itu.int/wftp3/av-arch/video-site/0801_Ant/VCEG-AH21.doc.
[9]   WANG M, WANG S Q, LI J R, et al Low complexity trellis-coded quantization in versatile video coding[J]. IEEE Transactions on Image Processing, 2021, 30: 2378- 2393
doi: 10.1109/TIP.2021.3051460
[10]   WIEGAND T, SULLIVAN G J, BJONTEGAARD G, et al Overview of the H. 264/AVC video coding standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13 (7): 560- 576
doi: 10.1109/TCSVT.2003.815165
[11]   WANG H L, KWONG S Prediction of zero quantized DCT coefficients in H. 264/AVC using Hadamard transformed information[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18 (4): 510- 515
doi: 10.1109/TCSVT.2008.918553
[12]   ZHAO Y, YUAN Y L. All-zero block detecting algorithm based on look-up threshold tables in H. 264 [C]// 6th International Conference on Digital Content, Multimedia Technology and its Applications. Seoul: IEEE, 2010: 183-187.
[13]   YANG E H, YU X Soft decision quantization for H. 264 with main profile compatibility[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 19 (1): 122- 127
[14]   LEE K, LEE H J, KIM J, et al A novel algorithm for zero block detection in high efficiency video coding[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7 (6): 1124- 1134
doi: 10.1109/JSTSP.2013.2272772
[15]   CUI J, XIONG R Q, ZHANG X F, et al Hybrid all zero soft quantized block detection for HEVC[J]. IEEE Transactions on Image Processing, 2018, 27 (10): 4987- 5001
doi: 10.1109/TIP.2018.2837351
[16]   YIN H B, YANG H Y, HUANG X F, et al Multi-stage all-zero block detection for HEVC coding using machine learning[J]. Journal of Visual Communication and Image Representation, 2020, 73: 102945
doi: 10.1016/j.jvcir.2020.102945
[17]   QI Y, YU C, DAI X. Research on radar plot classification based on fully connected neural network [C]// 2019 3rd International Conference on Electronic Information Technology and Computer Engineering. Xiamen: IEEE, 2019: 698-703.
[18]   ZHANG Z. Improved adam optimizer for deep neural networks[C]// 2018 IEEE/ACM 26th International Symposium on Quality of Service. Arizona: IEEE, 2018: 1-2.
[19]   MARPE D, SCHWARZ H, WIEGAND T Context-based adaptive binary arithmetic coding in the H. 264/AVC video compression standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13 (7): 620- 636
doi: 10.1109/TCSVT.2003.815173
[20]   BOSSEN F, BOYCE J, SUEHRING K, et al. JVET common test conditions and software reference configurations for SDR video [EB/OL]. (2019-05-08) [2021-07-03]. http://phenix.it-sudparis.eu/jvet/index.php/JVET-N1010-v1.doc.
[1] Fei SUN,Xiao-run LI,Liao-ying ZHAO,Shao-qi YU. Anomaly detection algorithm based on FrFT transform and total variation regularization[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1276-1284.
[2] Xun ZHANG,Jian-sheng LI,Wen OUYANG,Run-ze CHEN,Zhen JI,Kai ZHENG. Efficient convolution operators integrating motion information and tracking evaluation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1135-1143, 1167.
[3] Guo-hua ZHOU,Jian-wei LU,Tong-guang NI,Xue-long HU. Hierarchical nonlinear subspace dictionary learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1159-1167.
[4] You-wei WANG,Shuang TONG,Li-zhou FENG,Jian-ming ZHU,Yang LI,Fu CHEN. New inductive microblog rumor detection method based on graph convolutional network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 956-966.
[5] Xiao-gao XU,Ying-jie XIA,Si-yu ZHU,Li KUANG. Cooperative control algorithm of multi-intersection variable-direction lanes based on reinforcement learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 987-994, 1005.
[6] Li HE,Shan-min PANG. Face reconstruction from voice based on age-supervised learning and face prior information[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1006-1016.
[7] Cheng CHEN,Hao ZHANG,Yong-qiang LI,Yuan-jing FENG. Knowledge graph link prediction based on relational generative graph attention network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1025-1034.
[8] Xue-qin ZHANG,Tian-ren LI. Breast cancer pathological image classification based on Cycle-GAN and improved DPN network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 727-735.
[9] Meng XU,Dan WANG,Zhi-yuan LI,Yuan-fang CHEN. IncepA-EEGNet: P300 signal detection method based on fusion of Inception network and attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 745-753, 782.
[10] Lan WU,Han WANG,Bin-quan LI,Chong-yang LI,Fan-shi KONG. Multi-source unsupervised domain adaption method based on self-supervised task[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 754-763.
[11] Chang-yuan LIU,Xian-ping HE,Xiao-jun BI. Efficient network vehicle recognition combined with attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 775-782.
[12] Na ZHANG,Xu-lei QI,Xiao-an BAO,Biao WU,Xiao-mei TU,Yu-ting JIN. Single-stage object detection algorithm based on optimizing position prediction[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 783-794.
[13] Yong-chao WANG,Yu CAO,Yu-hui YANG,Duan-qing XU. Dialogue generation model based on knowledge transfer and two-direction asynchronous sequence[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 520-530.
[14] Ruo-ran CHENG,Xiao-li ZHAO,Hao-jun ZHOU,Han-chen YE. Review of Chinese font style transfer research based on deep learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 510-519, 530.
[15] Huang-he ZHENG,Zhi-qiu HUANG,Wei-wei LI,Yao-shen YU,Yong-chao WANG. API recommendation method based on natural nearest neighbors and collaborative filtering[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 494-502.