|
|
Spatial global context information network for semantic segmentation of remote sensing image |
Ze-kang WU1(),Shan ZHAO2,Hong-wei LI2,*(),Yi-rui JIANG1 |
1. College of Information Engineering, Zhengzhou University, Zhengzhou 450001, China 2. College of Geo-Science and Technology, Zhengzhou University, Zhengzhou 450001, China |
|
|
Abstract A spatial global context information network (NC-Net) was proposed based on the U-Net baseline network in order to solve the problem that the convolutional neural network (CNN) easily lost spatial information and the boundary information was unclear in the feature extraction stage of semantic segmentation. A re-encoding stage was added (ReEncoder) in order to enhance the ability of spatial information recognition. Multi-scale features were output in the Decoder stage, which was combined with the ReEncoder stage to obtain global context information. The boundary loss function was retained, and a multi-scale loss function cascade method was designed to optimize the overall network. The experimental results on the GID and WHDLD data sets show that the overall accuracy of the method achieves the best results, significantly outperforming other baseline models.
|
Received: 13 July 2021
Published: 24 April 2022
|
|
Fund: 国家自然科学基金面上项目(41571394) |
Corresponding Authors:
Hong-wei LI
E-mail: 2471217214@qq.com;laob_811@sina.com
|
遥感图像语义分割空间全局上下文信息网络
为了解决卷积神经网络(CNN)在语义分割特征提取阶段容易丢失空间信息以及边界信息不明确的问题,基于U-Net基线网络提出空间全局上下文信息网络(NC-Net). 增加再编码阶段(ReEncoder),以增强空间信息识别能力. 在Decoder阶段输出多尺度特征,与ReEncoder阶段结合获取全局上下文信息. 保留边界损失函数,设计多尺度损失函数级联方法,优化整体网络. 在GID以及WHDLD数据集上的实验结果表明,该方法的总体准确度达到最好成绩,明显优于其他基线模型.
关键词:
语义分割,
遥感影像,
空间信息,
全局上下文,
神经网络
|
|
[1] |
NORONHA S, NEVATIA R Detection and modeling of buildings from multiple aerial images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23 (5): 501- 518
doi: 10.1109/34.922708
|
|
|
[2] |
COTE M, SAEEDI P Automatic rooftop extraction in nadir aerial imagery of suburban regions using corners and variational level set evolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 51 (1): 313- 328
|
|
|
[3] |
LI E, FEMIANI J, XU S, et al Robust rooftop extraction from visible band images using higher order CRF[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53 (8): 4483- 4495
doi: 10.1109/TGRS.2015.2400462
|
|
|
[4] |
胡翔云, 巩晓雅, 张觅 变分法遥感影像人工地物自动检测[J]. 测绘学报, 2018, 47 (6): 780- 789 HU Xiang-yun, GONG Xiao-ya, ZHANG Mi A variational approach for automatic man-made object detection from remote sensing image[J]. Acta Geodaetica at Cartographica Sinica, 2018, 47 (6): 780- 789
doi: 10.11947/j.AGCS.2018.20170642
|
|
|
[5] |
林祥国, 张继贤 面向对象的形态学建筑物指数及其高分辨率遥感影像建筑物提取应用[J]. 测绘学报, 2017, 46 (6): 724- 733 LIN Xiang-guo, ZHANG Ji-xian Object-based morphological building index for building extraction form high resolution remote sensing imagery[J]. Acta Geodaetica at Cartographica Sinica, 2017, 46 (6): 724- 733
doi: 10.11947/j.AGCS.2017.20170068
|
|
|
[6] |
李道纪, 郭海涛, 卢俊, 等 遥感影像地物分类多注意力融和U型网络法[J]. 测绘学报, 2020, 49 (8): 1051- 1064 LI Dao-ji, GUO Hai-tao, LU Jun, et al A remote sensing image classification procedure based on multilevel attention fusion UNet[J]. Acta Geodaetica at Cartographica Sinica, 2020, 49 (8): 1051- 1064
doi: 10.11947/j.AGCS.2020.20190407
|
|
|
[7] |
LIU Z, LUO P, WANG X, et al. Deep learning face attributes in the wild [C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 3730-3738.
|
|
|
[8] |
LONG J, SHELHAMER E, DARRElLL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Santiago: IEEE, 2015: 3431-3440.
|
|
|
[9] |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
|
|
|
[10] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R Segnet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495
doi: 10.1109/TPAMI.2016.2644615
|
|
|
[11] |
SIMONYAN K, VEDALDI A, ZISSERMAN A. Deep inside convolutional networks: visualizing image classification models and saliency maps [C]// Workshop at International Conference on Learning Representations. Banff: IEEE, 2014.
|
|
|
[12] |
ZhAO H, SHI J, QI X, et al. Pyramid scene parsing network [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2881-2890.
|
|
|
[13] |
OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention u-net: learning where to look for the pancreas [EB/OL]. (2018-04-11). https://arxiv.org/abs/1804.03999.
|
|
|
[14] |
LIU P, WEI Y, WANG Q, et al Research on post-earthquake landslide extraction algorithm based on improved U-Net model[J]. Remote Sensing, 2020, 12 (5): 894
doi: 10.3390/rs12050894
|
|
|
[15] |
TONG X Y, XIA G S, LU Q, et al Land-cover classification with high-resolution remote sensing images using transferable deep models[J]. Remote Sensing of Environment, 2020, 237: 111322
|
|
|
[16] |
SHAO Z, YANG K, ZHOU W Performance evaluation of single-label and multi-label remote sensing image retrieval using a dense labeling dataset[J]. Remote Sensing, 2018, 10 (6): 964
doi: 10.3390/rs10060964
|
|
|
[17] |
SHAO Z, ZHOU W, DENG X, et al Multilabel remote sensing image retrieval based on fully convolutional network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13 (1): 318- 328
doi: 10.1109/JSTARS.2019.2961634
|
|
|
[18] |
ChEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. (2017-06-17). https://arxiv.org/abs/1706.05587.
|
|
|
[19] |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoderdecoder with atrous separable convolution for semantic image segmentation [C]// Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018: 801-818.
|
|
|
[20] |
RUI L, CEHNXI D, SHUNYI Z. MACU-Net semantic segmentation from high-resolution remote sensing images [EB/OL]. [2020-07-26]. https://arxiv.org/abs/2007.13083.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|