Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (6): 1065-1071    DOI: 10.3785/j.issn.1008-973X.2021.06.006
    
Improved model of road impedance function based on LSTM neural network
Fei WANG(),Wei-xiang XU*()
School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
Download: HTML     PDF(1501KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The classical BPR impedance function model was improved in order to more accurately calculate the impedance value of road traffic. The long short-term memory (LSTM) neural network was established to predict the positive and negative of the undetermined coefficient value in the improved function. The traffic data collected from the Shangtang Elevated to Zhonghe Elevated sections of Hangzhou City were used to verify the model. The results were compared with the traditional BPR impedance function method, the classic EMME/2 cone delay function, the BP neural network prediction method and the LSTM neural network prediction method. Results show that the improved model has higher accuracy and reliability under the premise that the data accuracy meets the requirements, indicating that the road impedance calculated by using the improved model can more realistically reflect the traffic operation condition of the road.



Key wordsurban traffic      improved BPR function      resistance function      long short-term memory neural network      travel time calculation     
Received: 31 May 2020      Published: 30 July 2021
CLC:  U 491  
Fund:  国家自然科学基金资助项目(61672002)
Corresponding Authors: Wei-xiang XU     E-mail: 18120893@bjtu.edu.cn;wxxu@bjtu.edu.cn
Cite this article:

Fei WANG,Wei-xiang XU. Improved model of road impedance function based on LSTM neural network. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1065-1071.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.06.006     OR     https://www.zjujournals.com/eng/Y2021/V55/I6/1065


基于LSTM神经网络改进的路阻函数模型

为了更加精确地计算道路的交通阻抗,对经典的BPR阻抗函数模型进行改进,建立长短期记忆(LSTM)神经网络预测改进函数中待定系数的正负,结合杭州市上塘高架至中河高架路段采集的交通数据进行验证. 与传统BPR阻抗函数方法、经典的EMME/2锥形延误函数计算方法、BP神经网络预测方法、LSTM神经网络预测方法得出的结果进行对比分析,结果显示在数据精度满足要求的前提下,改进的模型具有更高的准确性和可靠性. 说明使用改进模型计算得到的道路阻抗能够更为真实地反映道路的交通运行状况.


关键词: 城市交通,  改进BPR函数,  路阻函数,  长短期记忆神经网络,  行程时间计算 
Fig.1 Location and number of microwave detectors
Fig.2 Scatter distribution of value $\;\beta $ after introducing value $x$
Fig.3 Fitted curve of value $\;\beta $
Fig.4 Internal structure of singal LSTM uint
Fig.5 Structure of LSTM neural network
Fig.6 Comparison chart of value $T/{T_{\rm{f}}}$ calculation results of improved model and classic road resistance model
Fig.7 Comparison chart of value $T/{T_{\rm{f}}}$ calculation results of improved model and neural network
Fig.8 Comparison of travel time calculation results between improved model and classic road resistance model
Fig.9 Comparison of travel time calculation results between improved model and neural network
模型 MAE MAPE RMSE
经典BPR 6.34 0.22 11.06
经典EMME/2 锥形延误函数 7.78 0.29 12.31
BP神经网络 18.29 0.69 136.44
LSTM神经网络 5.87 0.21 10.86
本文方法 2.54 0.09 4.91
Tab.1 comparison of calculation results between improved model and classic model
[1]   ZHAO Z, CHEN W, WU X LSTM network: a deep learning approach for short-term traffic forecast[J]. IET Intelligent Transport Systems, 2017, 11 (2): 68- 75
doi: 10.1049/iet-its.2016.0208
[2]   DUAN Y J, LV Y S, WANG F Y. Travel time prediction with LSTM neural network[C]// 2016 IEEE 19th International Conference on Intelligent Transportation Systems. Brazil: IEEE, 2016: 1053-1058.
[3]   SIRIPANPORNCHANA C, PANICHPAPIBOON S, CHAOVALIT P. Travel-time prediction with deep learning[C]// Region 10 Conference. Singapore: IEEE, 2017: 1859-1862.
[4]   LI Y F, CHEN M N, ZHAO W Z Investigating long-term vehicle speed prediction based on BP-LSTM algorithms[J]. IET Intelligent Transport Systems, 2019, 13 (8): 1281- 1290
doi: 10.1049/iet-its.2018.5593
[5]   MA Y, ZHANG Z, IHLER A, et al Multi-lane short-term traffic forecasting with convolutional LSTM network[J]. IEEE Access, 2020, 2020 (8): 34629- 34643
[6]   XU W X, ZHAO J M. Research on traffic flow time series model and shortest path algorithm of urban traffic based on travel plans[C]// 2019 International Conference on Intelligent Computing, Automation and Systems. Chongqing: IEEE, 2019: 369-373.
[7]   徐维祥, 李娇娇. 一种基于出行计划预测未来交通拥堵状况方法及其系统: CN108320508A [P]. 2018-07-24.
[8]   DAVIDSON K B The theoretical basis of a flow-travel time relationship for use in transportation planning[J]. Australian Road Research, 1978, 8 (1): 32- 35
[9]   SPIESS H Conical volume-delay functions[J]. Transportation Science, 1990, 24 (2): 153- 158
doi: 10.1287/trsc.24.2.153
[10]   傅白白, 刘法胜, 冯恩民 交通网络费用函数的标定与分析[J]. 交通运输系统工程与信息, 2003, 3 (4): 53- 57
FU Bai-bai, LIU Fa-sheng, FENG En-min Traffic network costs analysis and validation[J]. Journal of Transportation Systems Engineering and Information Technology, 2003, 3 (4): 53- 57
doi: 10.3969/j.issn.1009-6744.2003.04.010
[11]   王树盛, 黄卫, 陆振波 路阻函数关系式推导及其拟合分析研究[J]. 公路交通科技, 2006, 23 (4): 107- 110
WANG Shu-sheng, HUANG Wei, LU Zhen-bo Deduction of link performance function and its regression analysis[J]. Journal of Highway and Transportation Research and Development, 2006, 23 (4): 107- 110
doi: 10.3969/j.issn.1002-0268.2006.04.026
[12]   四兵锋, 钟鸣, 高自友 城市混合交通条件下路段阻抗函数的研究[J]. 交通运输系统工程与信息, 2008, 2 (1): 68- 73
SI Bing-feng, ZHONG Ming, GAO Zi-you A link resistance function of urban mixed traffic network[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 2 (1): 68- 73
doi: 10.3969/j.issn.1009-6744.2008.01.011
[13]   王素欣, 王雷震, 高利, 等 BPR路阻函数的改进研究[J]. 武汉理工大学学报: 交通科学与工程版, 2009, 33 (3): 446- 449
WANG Su-xin, WANG Lei-zhen, GAO Li, et al Improvement study on BPR link performance function[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2009, 33 (3): 446- 449
doi: 10.3963/j.issn.1006-2823.2009.03.011
[14]   刘宁, 赵胜川, 何南 基于BPR函数的路阻函数研究[J]. 武汉理工大学学报: 交通科学与工程版, 2013, 37 (3): 545- 548
LIU Ning, ZHAO Sheng-chuan, HE Nan Further study of impedance function based on BPR function[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2013, 37 (3): 545- 548
doi: 10.3963/j.issn.2095-3844.2013.03.023
[15]   李昂, 李硕, 李玲 城市道路路段行程时间计算模型研究[J]. 公路工程, 2016, 41 (3): 193- 197
LI Ang, LI Shuo, LI Ling Research on the calculation models of vehicle travel time on urban road segments[J]. Highway Engineering, 2016, 41 (3): 193- 197
doi: 10.3969/j.issn.1674-0610.2016.03.040
[16]   潘义勇, 余婷, 马健霄 基于路段与节点的城市道路阻抗函数改进[J]. 重庆交通大学学报: 自然科学版, 2017, 36 (8): 76- 81
PAN Yi-yong, YU Ting, MA Jian-xiao Improvement of urban road impedance function based on section impedance and node impedance[J]. Journal of Chongqing Jiaotong University: Natural Science, 2017, 36 (8): 76- 81
[17]   李彦瑾, 罗霞 基于模糊神经网络的混合交通流路阻测算模型[J]. 吉林大学学报: 工学版, 2019, 49 (1): 53- 59
LI Yan-jin, LUO Xia Calculation model of road resistance in mixed traffic flow based on fuzzy neural network[J]. Journal of Jilin University: Engineering and Technology Edition, 2019, 49 (1): 53- 59
[1] Jia-jie YU,Yan-jie JI,Qing BU,Yue-biao ZHENG. Partitioned green-wave control scheme for long arterial considering breakpoint cost[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 640-648.
[2] Gen LI,Wei ZHAI,Lan WU. Study of merging interactions based on gradient boosting decision tree[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 649-655.
[3] Yong-heng CHEN,Chang-jian WU,Qiao-wen BAI,Shuai XIONG,Wan-ning LI,Hao-nan LI. Traffic characteristics and safety analysis of expressway off-ramp junction[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 379-387.
[4] Ning-bo CAO,Li-ying ZHAO. Decision-making method of autonomous vehicles for right of way on road segments[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 118-127.
[5] Nan ZHANG,Hong-zhao DONG,Yi-ni SHE. Seq2Seq prediction of bus trajectory on exclusive bus lanes[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1482-1489.
[6] Chen-xin ZHAO,Hong-zhao DONG,Wei-na HAO. Setting condition and traffic critical model of bus lane with time-division multiplexing[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 704-712.
[7] Qi ZHANG,Hong CHEN,Ji-biao ZHOU,Min ZHANG,Lin GUO,Ren-fa YANG. Effect of roadway access on traffic safety at adjacent intersection[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 720-726.
[8] Zhong-yu WANG,Ling WANG,Yan-li WANG,Bing WU. Traffic congestion prevention method during large-scale special events based on variable network topology optimization[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 358-366.
[9] Xi-ran ZHANG,Shao-kuan CHEN,Bo WANG,Shuang LIU,Zhuo WANG. Emergency allocation optimization model considering reliability of replaceable rescue[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 20-30.
[10] Jia-qi ZENG,Dian-hai WANG. Improved numerical method for two-way arterial signal coordinate control[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2386-2394.
[11] Xin-wei MA,Yan-jie JI,Xue JIN,Yang XU,Rui-ming CAO. Analysis on travel characteristics of bike-sharing users and influence factors on way to travel[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1202-1209.
[12] Kai LU,Xin TIAN,Guan-rong LIN,Xing-dong DENG. Simultaneous optimization model of signal phase design and timing at intersection[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 921-930.
[13] Wen-tao ZHU,Guo-min QIAN,Dong-fang MA,Dian-hai WANG. Bus delay model considering influence of stop at upstream of intersection[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 796-803.
[14] Chao SUN,Meng-hui LI,Fei HAN. Traffic evolution model with multi-source data of intelligent highway[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 546-556.
[15] Xiu-juan TIAN,De-xin YU,Hu-xing ZHOU,Xue XING,Shi-guang WANG. Dynamic control subdivision based on improved Newman algorithm[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 950-956.