Traf fic Engineering |
|
|
|
|
Analysis on travel characteristics of bike-sharing users and influence factors on way to travel |
Xin-wei MA1( ),Yan-jie JI1,*( ),Xue JIN1,Yang XU2,Rui-ming CAO3 |
1. School of Transportation, Southeast University, Nanjing 211189, China 2. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China 3. Architects and Engineers Co. LTD of Southeast University, Nanjing 210096, China |
|
|
Abstract The bike-sharing systems operated in China can be divided into two categories: docked bike-sharing and dockless bike-sharing. The travel patterns and its determinants of docked and dockless bike-sharing users was compared by using the multi-source data, including trip data of a dockless bike-sharing scheme, smart card data of a docked bike-sharing scheme, and survey data of bike-sharing users in Nanjing. Firstly, the difference in travel characteristics of docked and dockless bike-sharing users were compared, such as travel distance, usage frequency and temporal travel patterns. Secondly, the binary Logistic regression model was built to explore the significant factors that influenced the choice of way to travel from two aspects: the user's personal attribute and subjective perception. Results show that dockless bike-sharing systems have shorter average travel distance and travel time but higher hourly usage volume, compared to docked bike-sharing systems. Trips of docked and dockless bike-sharing generated on workdays are more frequent than those on weekends, especially during the morning and evening rush hours. As to the factors that influence users ’ choice on way to travel, results show that retirees, enterprise staff and users with E-bikes are less likely to use docked sharing-bikes than dockless sharing-bikes; both high-income travelers and people who are highly sensitive to discounts, internet technology and online payment service are more likely to use the dockless bike-sharing.
|
Received: 12 September 2019
Published: 06 July 2020
|
|
Corresponding Authors:
Yan-jie JI
E-mail: 230169206@seu.edu.cn;jiyanjie@seu.edu.cn
|
租赁自行车用户出行特征及方式的影响因素分析
针对我国市面上2种主流租赁自行车(公共自行车与共享单车),以南京市为例,基于共享单车骑行数据、公共自行车智能卡数据和租赁自行车用户问卷调查数据,对比2种租赁自行车用户在出行特征及其影响因素方面的差异. 从骑行距离、车辆使用频率与时间分布等方面揭示租赁自行车用户的出行特征差异;构建二元Logistic模型,从用户个人属性和主观感知2个层面探究影响租赁自行车用户出行方式选择的显著性因素. 结果表明:相较于公共自行车,共享单车的平均骑行距离和骑行时间更短,但小时使用量更高;2种租赁自行车在工作日均呈现出明显的早晚高峰时段,且使用量均远高于周末. 退休人员、企业职员和电动自行车拥有者更倾向于使用公共自行车;高收入群体、对互联网技术以及在线支付服务高度敏感的人则更倾向于使用共享单车.
关键词:
共享单车,
公共自行车,
出行特征,
二元Logistic模型
|
|
[1] |
常山, 宋瑞, 何世伟, 等 共享单车故障车辆回收模型[J]. 吉林大学学报:工学版, 2018, 48 (6): 54- 61 CHANG Shan, SONG Rui, HE Shi-wei, et al Recycling model of faulty bike sharing[J]. Journal of Jilin University: Engineering and Technology Edition, 2018, 48 (6): 54- 61
|
|
|
[2] |
中国信息通信研究院政策与经济研究所, 摩拜单车. 2018年度中国共享单车行业报告[EB/OL]. (2018-04-16)/[2018-06-25]. https://wenku.baidu.com/view/f019ea16ae45b307e87101f69e3143323968f5f8.html.
|
|
|
[3] |
张昱, 刘学敏, 张红 城乡结合部居民公共自行车系统认知与使用状况调查——以北京市通州区、大兴区为例[J]. 城市问题, 2015, (3): 42- 46 ZHANG Yu, LIU Xue-min, ZHANG Hong Survey on the reorganization and using status of public bicycle system in urban fringe areas: taking Tongzhou and Daxing districts of Beijing for example[J]. Urban Problems, 2015, (3): 42- 46
|
|
|
[4] |
SHAHEEN S, ZHANG H, MARTIN E, et al China's Hangzhou public bicycle: understanding early adoption and behavioral response to bikesharing[J]. Transportation Research Record, 2011, 2247 (1): 33- 41
doi: 10.3141/2247-05
|
|
|
[5] |
LAN J, MA Y, ZHU D, et al Enabling value co-creation in the sharing economy: the case of mobike[J]. Sustainability, 2017, 9 (9): 1504
doi: 10.3390/su9091504
|
|
|
[6] |
XIN F, CHEN Y, WANG X, et al Cyclist satisfaction evaluation model for free-floating bike-sharing system: a case study of Shanghai[J]. Transportation Research Record, 2018, 2672 (31): 21- 32
doi: 10.1177/0361198118770193
|
|
|
[7] |
SHEN Y, ZHANG X, ZHAO J, et al Understanding the usage of dockless bike sharing in Singapore[J]. International Journal of Sustainable Transportation, 2018, 12 (9): 686- 700
doi: 10.1080/15568318.2018.1429696
|
|
|
[8] |
KALTENBRUNNER A, MEZA R, GRIVOLLA J, et al Urban cycles and mobility patterns: exploring and predicting trends in a bicycle-based public transport system[J]. Pervasive and Mobile Computing, 2010, 6 (4): 455- 466
doi: 10.1016/j.pmcj.2010.07.002
|
|
|
[9] |
王家川, 欧阳松寿 北京市轨道交通站点周边区域共享自行车运行不均衡性研究[J]. 交通运输系统工程与信息, 2019, 19 (1): 214- 221 WANG Jia-chuan, OUYANG Song-shou Disequilibrium of bicycle-sharing in rail transit station areas in Beijing[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19 (1): 214- 221
|
|
|
[10] |
ZHANG D, XU X, YANG X, et al User satisfaction and its impacts on the use of a public bicycle system: empirical studies from Hangzhou, China[J]. Transportation Research Record, 2015, 2512 (1): 56- 65
doi: 10.3141/2512-07
|
|
|
[11] |
AI Y, LI Z, GAN M, et al A deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system[J]. Neural Computing and Applications, 2019, 31 (5): 1665- 1677
doi: 10.1007/s00521-018-3470-9
|
|
|
[12] |
袁朋伟, 董晓庆, 翟怀远, 等 基于Nested Logit模型的共享单车选择行为研究[J]. 交通运输系统工程与信息, 2018, 18 (5): 191- 210 YUAN Peng-wei, DONG Xiao-qing, ZHAI Huai-yuan, et al Choice behavior of bike-sharing based on nested logit model[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18 (5): 191- 210
|
|
|
[13] |
LI X, ZHANG Y, SUN L, et al Free-floating bike sharing in Jiangsu: users’ behaviors and influencing factors[J]. Energies, 2018, 11 (7): 1664
doi: 10.3390/en11071664
|
|
|
[14] |
LIU H, LIN J Associations of built environments with spatiotemporal patterns of public bicycle use[J]. Journal of Transport Geography, 2019, 74: 299- 312
doi: 10.1016/j.jtrangeo.2018.12.010
|
|
|
[15] |
CHEN M, WANG D, SUN Y, et al A comparison of users’ characteristics between station-based bike sharing system and free-floating bike sharing system: case study in Hangzhou, China[J]. Transportation, 2018, 47: 1- 16
|
|
|
[16] |
GU T, KIM I, CURRIE G, et al To be or not to be dockless: empirical analysis of dockless bikeshare development in China[J]. Transportation Research Part A-policy and Practice, 2019, 119: 122- 147
doi: 10.1016/j.tra.2018.11.007
|
|
|
[17] |
南京市规划局. 南京交通发展年度报告(2018)[R]. 南京: [s.n.], 2018.
|
|
|
[18] |
李强, 任志远 基于Logistic回归分析的土地利用变化空间统计与模拟[J]. 统计与信息论坛, 2012, 27 (3): 98- 103 LI Qiang, REN Zhi-yuan Spacial statistics and simulation of the land use change based on binary Logistic regression[J]. Statistics and Information Forum, 2012, 27 (3): 98- 103
doi: 10.3969/j.issn.1007-3116.2012.03.017
|
|
|
[19] |
UNCLES M D Discrete choice analysis: theory and application to travel demand[J]. Journal of the Operational Research Society, 1987, 38 (4): 370- 371
|
|
|
[20] |
WASHINGTON S P, KARLAFITS M G, MANNERING F L. Statistical and econometric methods for transportation data analysis [M]. New York: Chapman and Hall/CRC, 2010.
|
|
|
[21] |
安睿, 刘圆圆, 韩军红, 等 基于Logistic模型的城市慢行交通出行者特性研究[J]. 交通运输研究, 2015, 1 (6): 26- 32 AN Rui, LIU Yuan-yuan, HAN Jun-hong, et al Urban non-motorized travelers’ characteristics based on Logistic model[J]. Transportation Standardization, 2015, 1 (6): 26- 32
|
|
|
[22] |
LI X, ZHANG Y, DU M, et al Social factors influencing the choice of bicycle: difference analysis among private bike, public bike sharing and free-floating bike sharing in Kunming, China[J]. KSCE Journal of Civil Engineering, 2019, 23 (5): 2339- 2348
doi: 10.1007/s12205-019-2078-7
|
|
|
[23] |
WU F, XUE Y. Innovations of bike sharing industry in China: a case study of Mobike ’s station-less bike sharing system [D]. Stockholm: KTH Royal Institute of Technology, 2017.
|
|
|
[24] |
ZHAO J, WANG J, DENG W, et al Exploring bike sharing travel time and trip chain by gender and day of the week[J]. Transportation Research Part C-Emerging Technologies, 2015, 58: 251- 264
doi: 10.1016/j.trc.2015.01.030
|
|
|
[25] |
刘冬旭, 董红召 共享自行车系统调度区域的分形树自平衡划分算法[J]. 浙江大学学报:工学版, 2018, 52 (7): 1275- 1283 LIU Dong-xu, DONG Hong-zhao Fractal tree based self-balanced partitioning algorithms for bike sharing system[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (7): 1275- 1283
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|