Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (5): 950-956    DOI: 10.3785/j.issn.1008-973X.2019.05.016
    
Dynamic control subdivision based on improved Newman algorithm
Xiu-juan TIAN1,2(),De-xin YU1,3,4,Hu-xing ZHOU1,3,4,*(),Xue XING1,Shi-guang WANG1
1. College of Transportation, Jilin University, Changchun 130022, China
2. School of Transportation Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
3. Jilin Engineering Research Center for Intelligent Transportation System, Changchun 130022, China
4. Jilin Province Key Laboratory of Road Traffic, Changchun 130022, China
Download: HTML     PDF(899KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A dynamic subdivision method based on the improved Newman community fast division algorithm was proposed with the goal of regional coordinated control, in order to optimize the existing control subdivision method. The relevance of intersections was analyzed quantitatively by taking the factors including the distance between adjacent intersections, traffic volume, travel time, traffic flow discrete characteristic, signal cycle and road traffic flow density into consideration synthetically. The traffic flow correlation coefficient, signal cycle correlation coefficient and traffic flow density correlation coefficient of adjacent intersections were calculated respectively, and the total correlation degree model of adjacent intersections was established. The traditional Newman algorithm was improved and the correlation degree of intersections was brought in to divide the regional network into dynamic sub-regions according to different traffic characteristics. An actual regional road network was selected to verify the effect and performance of the proposed model. Results showed that control subdivision by Newman algorithm could not change with traffic characteristics. By contrast, the control subdivision result of the proposed model was more elaborate and more in line with the actual traffic flow characteristics. Moreover, dynamic subdivision could be realized according to the traffic characteristics of different time periods, which could provide a good basis for the formulation of the signal control scheme.



Key wordssignal control      improved Newman algorithm      subdivision      relevance of intersections      regional control     
Received: 25 April 2018      Published: 17 May 2019
CLC:  U 491  
Corresponding Authors: Hu-xing ZHOU     E-mail: jidatianxj@126.com;zhouhx@jlu.edu.cn
Cite this article:

Xiu-juan TIAN,De-xin YU,Hu-xing ZHOU,Xue XING,Shi-guang WANG. Dynamic control subdivision based on improved Newman algorithm. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 950-956.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.05.016     OR     http://www.zjujournals.com/eng/Y2019/V53/I5/950


基于改进Newman算法的动态控制子区划分

为了优化现有控制子区划分方法,以区域协调控制为目标,提出基于改进的Newman社团快速划分的动态子区划分方法. 综合考虑路网中相邻交叉口之间的距离、交通流量、行程时间、车流离散特性、信号周期和路段交通流密度等因素,定量分析交叉口关联性;分别计算相邻交叉口的流量关联系数、信号周期关联系数和路段交通流密度关联系数,建立相邻交叉口的总关联度模型;对传统Newman算法进行改进,引入交叉口关联度,依据不同交通特性对区域路网进行动态子区划分;选取实际区域路网,进行模型验证分析. 结果表明:Newman算法子区划分结果不能随着交通特性的改变而改变;与之相比,所提出模型的子区划分结果更加细致,更加符合实际交通流特性,且可以依据不同时段交通特性实现动态子区划分,可以为信号控制方案制定提供良好基础.


关键词: 信号控制,  改进Newman算法,  子区划分,  交叉口关联性,  区域控制 
Fig.1 Regional road network for subdivision validation
Fig.2 Simplified diagram for regional road network
i?j Ii?j i?j Ii?j
1?2 0.012 9?10 0.126
1?5 0.002 10?11 0.055
2?3 0.009 10?17 0.037
3?4 0.093 11?12 0.004
4?5 0.011 11?16 0.076
4?7 0.005 12?15 0.022
5?6 0.020 14?15 0.030
6?7 0.046 14?19 0.030
6?13 0.042 15?16 0.081
7?8 0.007 16?17 0.078
7?12 0.053 16?19 0.005
8?9 0.014 18?19 0.011
8?11 0.008
Tab.1 Total correlation degree model for intersections
Fig.3 Traffic subdivision results based on Newman algorithm
Fig.4 Modular values of subdivision results based on Newman algorithm
Fig.5 Traffic subdivision results based on improved Newman algorithm
Fig.6 Modular values of subdivision results based on improved Newman algorithm
Fig.7 Traffic control sub-region composition based on Newman algorithm
Fig.8 Traffic control sub-region composition based on improved Newman algorithm
[1]   WALINCHUS R J Real-time network decomposition and subnetwork interfacing[J]. Highway Research Record, 1971, 366: 20- 28
[2]   YAGODA N H, PRINCIPE E H, VICK C E, et al Subdivision of signal systems into control areas[J]. Traffic Engineering, 1973, 43 (12): 42- 45
[3]   PINNELL C, WILSHIRE M R L Area wide multilevel traffic control systems[J]. IFAC Proceedings Volumes, 1976, 9 (4): 339- 348
doi: 10.1016/S1474-6670(17)67310-5
[4]   MOORE J E, JOVANIS P P Statistical designation of traffic control subareas[J]. Journal of Transportation Engineering, 1985, 111 (3): 208- 223
doi: 10.1061/(ASCE)0733-947X(1985)111:3(208)
[5]   李瑞敏, 陆化普, 史其信 交通信号控制子区模糊动态划分方法研究[J]. 武汉理工大学学报: 交通科学与工程版, 2008, 32 (3): 381- 384
LI Rui-min, LU Hua-pu, SHI Qi-xin Research on traffic control sub-area fuzzy automatic division method[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2008, 32 (3): 381- 384
[6]   卢凯, 徐建闽, 李轶舜 基于关联度分析的协调控制子区划分方法[J]. 华南理工大学学报: 自然科学版, 2009, 37 (7): 6- 9
LU Kai, XU Jian-min, LI Yi-shun Division method of coordinated control subareas based on correlation degree analysis[J]. Journal of South China University of Technology: Natural Science Edition, 2009, 37 (7): 6- 9
[7]   杨庆芳, 陈林. 交通控制子区动态划分方法[J]. 吉林大学学报: 工学版, 2006, 36(增2): 145–148.
YANG Qing-fang, CHEN Lin. Division approach of traffic control work zone[J]. Journal of Jilin University: Engineering and Technology Edition, 2006, 36(Suppl. 2): 145–148.
[8]   尹洪英, 徐丽群, 曹永荣 基于谱聚类算法的城市路网动态分区研究[J]. 交通信息与安全, 2010, 28 (1): 16- 19
YIN Hong-ying, XU Li-qun, CAO Yong-rong City transportation road network dynamic zoning based on spectral clustering algorithm[J]. Journal of Transport Information and Safety, 2010, 28 (1): 16- 19
doi: 10.3963/j.issn.1674-4861.2010.01.004
[9]   陈宁宁. 信号控制子区动态划分及区域自适应协调控制研究[D]. 广州: 中山大学, 2010.
CHEN Ning-ning. Research on sub-area dynamic division and adaptive coordinated signal control [D]. Guangzhou: Sun Yat-sen University, 2010.
[10]   ZHOU Z, LIN S, XI Y. A dynamic network partition method for heterogenous urban traffic networks [C] // 15th International IEEE Conference on Intelligent Transportation Systems. Anchorage: IEEE, 2012: 820–825.
[11]   王力, 陈智, 刘小明, 等 基于社区发现的交通控制子区优化方法研究[J]. 交通运输系统工程与信息, 2012, 12 (6): 164- 169
WANG Li, CHEN Zhi, LIU Xiao-ming, et al Sub-control-area division optimization of traffic network based on community discovery[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12 (6): 164- 169
doi: 10.3969/j.issn.1009-6744.2012.06.025
[12]   卢凯, 徐建闽, 郑淑鉴, 等 协调控制子区快速动态划分方法研究[J]. 自动化学报, 2012, 38 (2): 137- 145
LU Kai, XU Jian-min, ZHENG Shu-jian, et al Research on fast dynamic division method of coordinated control subarea[J]. Acta Automatica Sinica, 2012, 38 (2): 137- 145
doi: 10.3969/j.issn.1003-8930.2012.02.025
[13]   SHEN G, YANG Y A dynamic signal coordination control method for urban arterial roads and its application[J]. Frontiers of Information Technology and Electronic Engineering, 2016, 17 (9): 70- 81
[14]   徐建闽, 鄢小文, 荆彬彬, 等 考虑交叉口不同饱和度的路网动态分区方法[J]. 交通运输系统工程与信息, 2017, 17 (4): 149- 156
XU Jian-min, YAN Xiao-wen, JING Bin-bin, et al Dynamic network partitioning method based on intersections with different degree of saturation[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17 (4): 149- 156
[15]   PACEY G M. The progress of a bunch of vehicles released from a traffic signal [R]. Wokingham: Transport and Road Research Laboratory, 1956.
[16]   GRACE M J, POTTS R B A theory of the diffusion of traffic platoons[J]. Operations Research Society of America, 1964, 12 (2): 255- 275
[17]   ROBERTSON D I " TRANSYT”method for area traffic control[J]. Traffic Engineering and Control, 1969, 11 (6): 276- 281
[18]   林晓伟. 基于路网关联度分析的城市路网划分方法研究[D]. 长春: 吉林大学, 2017.
LIN Xiao-wei. Study on urban road network division method based on road network correlative degree analysis [D]. Changchun: Jilin University, 2017.
[19]   美国运输部联邦公路局. 交通控制系统手册[M]. 北京: 人民交通出版社, 1987.
[20]   沈国江, 钱晓杰 主干道动态协调控制技术[J]. 控制与决策, 2013, 28 (12): 150- 154
SHEN Guo-jiang, QIAN Xiao-jie Dynamic coordination control technique for trunk road[J]. Control and Decision, 2013, 28 (12): 150- 154
[21]   NEWMAN M E J, GIRVAN M Finding and evaluating community structure in networks[J]. Physical Review E, 2004, 69 (2): 026113
doi: 10.1103/PhysRevE.69.026113
[22]   NEWMAN M E J Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69 (6): 066133
doi: 10.1103/PhysRevE.69.066133
[23]   GIRVAN M, NEWMAN M E J Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99 (12): 7821- 7826
doi: 10.1073/pnas.122653799
[24]   林丹. 基于有权网络子区划分的区域交通协调控制研究[D]. 南京: 南京邮电大学, 2017.
LIN Dan. Regional traffic coordination research based on the subarea of weighted network [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2017.
[1] Kai LU,Xin TIAN,Guan-rong LIN,Xing-dong DENG. Simultaneous optimization model of signal phase design and timing at intersection[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 921-930.
[2] QIN Hong-chao, LI Yan-yan, LONG Wei, ZHAO Rui-peng. Real-time video dehazing using guided filtering and transmissivity estimated based on dark channel prior theory[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1302-1309.
[3] LI Wen-jing, SUN Feng, LI Xi-yao, MA Dong-fang. Time-of-day breakpoints for traffic signal control using dynamic recurrence order clustering[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1150-1156.
[4] ZHU Xiao-qiang, YU Tao. Interactive sculpture modeling based on mesh deformation in HMD VR environment[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 599-604.
[5] YU De-xin, TIAN Xiu-juan, YANG Zhao-sheng, ZHOU Xi-yang, CHENG Ze-yang. Improved arterial coordinated signal control optimization model[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 2019-2029.
[6] SHEN Ming-yu, QIU Le-miao, TAN Jian-rong, WU Xiao-rong. Active push design of product subdivision structure driven by performance requirement[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 287-295.
[7] ZHAO Jie-yi, TANG Min, TONG Ruo-feng. CUDA based shadow volume algorithm for subdivision surfaces[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1301-1306.
[8] SUN Liang-feng, ZHANG Shu-you, QIU Le-miao, HU Kun. Product modularization renewable model and regeneration techniques[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(10): 1744-1756.
[9] WANG Ying-nan,YUAN Bo, NI Xu-xiang. Subdivision technique of absolute angular encoder using array detector[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(2): 370-374.