Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (4): 704-712    DOI: 10.3785/j.issn.1008-973X.2021.04.012
    
Setting condition and traffic critical model of bus lane with time-division multiplexing
Chen-xin ZHAO(),Hong-zhao DONG*(),Wei-na HAO
Joint Institute of Intelligent Transportation System, Zhejiang University of Technology, Hangzhou 310014, China
Download: HTML     PDF(1334KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The setting condition of the bus lane with time-division multiplexing (BLTDM) was analyzed in order to provide a reliable setting standard and basis for intermittent bus lane. The road setting condition and traffic setting condition were qualitatively analyzed based on the purpose and characteristics of the lane setting. The road setting condition is one-way 3 lanes or more, and the traffic setting condition is high traffic saturation and low bus flow. The traffic efficiency and the lane setting constraints were comprehensively considered under the three modes of general lanes, dedicated bus lanes and BLTDM by taking the maximum traveller’s total time consumption as the objective function in order to identify the traffic setting condition quantization interval and setting index. A traffic critical model of the traffic setting condition for BLTDM was established. The critical value of the lane traffic setting condition was obtained by solving the model, and the setting quantization interval was obtained. A case study was given to demonstrate the feasibility of the model, and the operation effect after setting BLTDM was evaluated.



Key wordsintermittent bus lane      bus lane with time-division multiplexing      setting condition      traffic critical model      quantization interval     
Received: 10 April 2020      Published: 07 May 2021
CLC:  U 491  
Fund:  国家自然科学基金资助项目(61773347);浙江省自然科学基金资助项目(LY17F030017,LY19E050008)
Corresponding Authors: Hong-zhao DONG     E-mail: zcx_2009@foxmail.com;its@zjut.edu.cn
Cite this article:

Chen-xin ZHAO,Hong-zhao DONG,Wei-na HAO. Setting condition and traffic critical model of bus lane with time-division multiplexing. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 704-712.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.04.012     OR     http://www.zjujournals.com/eng/Y2021/V55/I4/704


公交时分复用车道设置条件及交通临界模型

为了提供可靠的间歇式公交专用道设置标准和依据,研究公交时分复用车道(BLTDM)的设置条件. 基于车道的设置目的及特性,对车道的道路设置条件和交通设置条件进行定性分析,得到道路设置条件为单向3车道以上路段,交通设置条件为高交通饱和度和低公交车流量. 为了获取明确的交通设置条件量化区间和设置指标,以路段出行者总时耗临界最大为目标函数,综合考虑混行车道、公交专用道和公交时分复用车道3种方式下的交通效率和车道设置约束条件,建立公交时分复用车道的交通设置条件临界模型. 通过求解模型获取车道交通设置条件的临界值,得到车道的交通设置条件量化区间. 以杭州市某路段为案例,验证该模型的可行性,评估设置公交时分复用车道的运行效果.


关键词: 间歇式公交专用道,  公交时分复用车道,  设置条件,  交通临界模型,  量化区间 
Fig.1 Topological structure of bus lane with time-division multiplexing
Fig.2 Control signal of bus lane with time-division multiplexing
交通设置条件 道路设置条件 设置建议
公交车交通量(辆/高峰小时) 公交客流量(人/高峰小时)
150辆/高峰小时以上,且路段其他车道断面流量大于500辆/高峰小时 单向公交客运量大于6 000 人/高峰小时 单向机动车道3车道以上(含3车道),或单向机动车道路幅宽度不小于11 m 应设置公交专用道
90辆/高峰小时以上 单向机动车道4车道以上(含4车道) 宜设置公交专用道
100辆/高峰小时以上 4 000人/高峰小时以上 单向机动车道3车道
150辆/高峰小时以上 6 000人/高峰小时以上 单向机动车道2车道
Tab.1 Specification for setting exclusive bus lane
Fig.3 Applicable traffic condition of bus lane with time-division multiplexing
Fig.4 Schematic of case link for setting bus lane with time-division multiplexing
项目 数据
路段长度 620 m
车道配置 单向4社会车道,双向公交专用道
车道宽度 3. 35 m
社会车辆自由流车速 50 km/h
公交车自由流车速 40 km/h
普通车道通行能力 3120 veh/h(4条)
公交专用道通行能力 450 veh/h(1条)
Tab.2 Attribute information of case link for setting bus lane with time-division multiplexing
Fig.5 Data of flow- travel time collected by video gate
车辆类型 α拟合值的95%置信区间 β拟合值的95%置信区间 RMSE 拟合优度
社会车辆 (2.084,2.196) (1.375,1.517) 8.2921 0.9185
公交车辆 (0.1886,0.1997) (1.146,1.309) 3.7977 0.8963
Tab.3 Evaluation of BPR model calibration results
Fig.6 Critical curve for traffic setting of bus lane with time-division multiplexing in case link
veh/h
对比点 Qcar Qbus
对比点1(设置区间内) 2600 294
对比点2(设置区间外) 2000 294
对比点3(临界位置) 2400 294
Tab.4 Selected traffic conditions
s
对比点 T
混行车道 公交专用道 公交时分复用车道
对比点1 82.18 83.17 81.31
对比点2 73.23 75.72 74.65
对比点3 78.96 80.37 78.79
Tab.5 Average travel time of travelers in each setting mode
km/h
对比点 vbus
混行车道 公交专用道 公交时分复用车道
对比点1 22.57 30.18 30.18
对比点2 28.73 30.18 30.18
对比点3 25.65 30.18 30.18
Tab.6 Average velocity of buses in each setting mode
km/h
对比点 vcar
混行车道 公交专用道 公交时分复用车道
对比点1 25.76 22.27 24.68
对比点2 33.47 31.24 32.39
对比点3 30.20 27.34 29.12
Tab.7 Average velocity of cars in each setting mode
[1]   DAGANZO C, DAGANZO C F. Fundamentals of transportation and traffic operations [M]. Oxford: Pergamon, 1997.
[2]   VIEGAS J, LU B. Turn of the century, survival of the compact city, revival of public transport [C]// Transforming the Port and Transportation Business. Leuven: Acco, 1996: 55-63.
[3]   VIEGAS J, LU B Traffic control system with intermittent bus lanes[J]. IFAC Proceedings Volumes, 1997, 30 (8): 865- 870
doi: 10.1016/S1474-6670(17)43930-9
[4]   VIEGAS J, LU B The intermittent bus lane signals setting within an area[J]. Transportation Research Part C: Emerging Technologies, 2004, 12 (6): 453- 469
doi: 10.1016/j.trc.2004.07.005
[5]   YANG H, WANG W. An innovative dynamic bus lane system and its simulation-based performance investigation [C]// 2009 IEEE Intelligent Vehicles Symposium. Xi'an: IEEE, 2009: 105-110.
[6]   QIU F, LI W, ZHANG J, et al Exploring suitable traffic conditions for intermittent bus lanes[J]. Journal of Advanced Transportation, 2015, 49 (3): 309- 325
doi: 10.1002/atr.1265
[7]   DONG H, ZHAO Y, MA S A novel TDM approach for dedicated bus lanes guaranteeing bus priority[J]. Applied Mechanics and Materials, 2011, 48-49: 106- 109
doi: 10.4028/www.scientific.net/AMM.48-49.106
[8]   DONG H, ZHAO Y, LI M An approach of multiplexing for bus lanes based on VII and multisensory information fusion[J]. Sensor Letters, 2011, 9 (5): 1968- 1973
doi: 10.1166/sl.2011.1541
[9]   DONG H, LIN Y, LIU D, et al Research on TDM approach of sharing BRT-lane supported by vehicle-infrastructure integration[J]. Engineering Sciences, 2013, 11 (5): 77- 83
[10]   DONG H, ZHAO C, FU F. Sharing bus lanes: a new lanes multiplexing-based method using a dynamic time slice policy[EB/OL]. (2018-12-12). http://dx.doi.org/10.1680/jtran.180075.
[11]   ZHAO C, DONG H. Modeling and evaluation of a novel intermittent bus lane with time-division multiplexing[EB/OL]. (2020-12-11). http://dx.doi.org/10.1680/jtran.19.00002.
[12]   董红召, 赵玉婷 基于PARAMICS的公交专用道时分复用方法研究及优化[J]. 浙江工业大学学报, 2012, 40 (1): 65- 69
DONG Hong-zhao, ZHAO Yu-ting Optimization of time division multiplexing for dedicated bus lanes based on PARAMICS[J]. Journal of Zhejiang University of Technology, 2012, 40 (1): 65- 69
doi: 10.3969/j.issn.1006-4303.2012.01.016
[13]   胡淑芬. 间歇性公交专用道的发展历程及研究综述 [C]// 2018中国城市规划年会论文集(06城市交通规划). 杭州: [s.n.], 2018: 793-801.
HU Shu-fen. The review of the development and research of intermittent bus lanes [C]// 2018 China Urban Planning Annual Meeting (06 Urban Transport Planning). Hangzhou: [s.n.], 2018: 793-801.
[14]   GIRAO P S, ALEGRIA F, VIEGAS J M, et al. Wireless system for traffic control and law enforcement [C]// 2006 IEEE International Conference on Industrial Technology. Piscataway: IEEE, 2006: 1768-1770.
[15]   VIEGAS J M, ROQUE R, LU B, et al The intermittent bus lane system: Lisbon demonstration project[J]. International Association of Public Transport, 2007, 56 (3): 40- 43
[16]   CURRIE G, LAI H Intermittent and dynamic transit lanes: Melbourne, Australia, experience[J]. Transportation Research Record, 2008, 2072 (1): 49- 56
doi: 10.3141/2072-06
[17]   CHIABAUT N, BARCET A Demonstration and evaluation of an intermittent bus lane strategy[J]. Public Transport, 2019, 11 (3): 443- 456
doi: 10.1007/s12469-019-00210-3
[18]   刘伟, 别牧, 张建旭, 等 设置公交专用道的流量条件研究[J]. 重庆交通大学学报: 自然科学版, 2005, 24 (6): 129- 132
LIU Wei, BIE Mu, ZHANG Jian-xu, et al Study on traffic volume condition of setting bus lane[J]. Journal of Chongqing Jiaotong University: Natural Science, 2005, 24 (6): 129- 132
[19]   王涛, 陈峻 基于时间效益的城市公交专用道设置流量条件[J]. 哈尔滨工业大学学报, 2014, 46 (4): 115- 121
WANG Tao, CHEN Jun Traffic volume conditions of setting bus lane on urban roadway based on time utility[J]. Journal of Harbin Institute of Technology, 2014, 46 (4): 115- 121
doi: 10.11918/j.issn.0367-6234.2014.04.020
[20]   NESTLE E, SCHUNNEMAN R F. Time division multiplexing: U. S. Patent 3, 599, 160 [P]. 1971-08-10.
[21]   公安部交通管理科学研究院. 公交专用车道设置: GA/T 507—2004 [S]. 北京: 中国标准出版社, 2004.
[22]   要甲. 基于多式交通均衡的公交专用道设置分析与优化[D]. 长沙: 中南大学, 2014.
YAO Jia. Bus exclusive lane setting analysis and optimization based on multi-modal transportation equilibrium [D]. Changsha: Central South University, 2014.
[23]   四兵锋, 钟鸣, 高自友 城市混合交通条件下路段阻抗函数的研究[J]. 交通运输系统工程与信息, 2008, 8 (1): 72- 77
SI Bing-feng, ZHONG Ming, GAO Zi-you A link resistance function of urban mixed traffic network[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8 (1): 72- 77
[24]   中国公路学会《交通工程手册》编委会. 交通工程手册[M]. 北京: 人民交通出版社, 1995.
[25]   郭晖, 李文权 设置临时性公交专用道的效益分析[J]. 交通运输工程与信息学报, 2011, 9 (2): 92- 96
GUO Hui, LI Wen-quan Traffic benefit evaluation of the bus lanes with intermittent priority[J]. Journal of Transportation Engineering and Information, 2011, 9 (2): 92- 96
doi: 10.3969/j.issn.1672-4747.2011.02.017
[26]   TRB. Highway capacity manual [M]. Washington DC: National Research Council, 2000.
[27]   LUO Y, JIA B, LI X, et al A realistic cellular automata model of bus route system based on open boundary[J]. Transportation Research Part C-emerging Technologies, 2012, 25: 202- 213
doi: 10.1016/j.trc.2012.06.004
[28]   张巧. 混合交通流条件下城市路段BPR函数参数标定研究[D]. 长沙: 中南大学, 2013.
ZHANG Qiao. Calibrating BPR function under urban mixed traffic flow condition [D]. Changsha: Central South University, 2013.
[1] Qi ZHANG,Hong CHEN,Ji-biao ZHOU,Min ZHANG,Lin GUO,Ren-fa YANG. Effect of roadway access on traffic safety at adjacent intersection[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 720-726.
[2] Zhong-yu WANG,Ling WANG,Yan-li WANG,Bing WU. Traffic congestion prevention method during large-scale special events based on variable network topology optimization[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 358-366.
[3] Xi-ran ZHANG,Shao-kuan CHEN,Bo WANG,Shuang LIU,Zhuo WANG. Emergency allocation optimization model considering reliability of replaceable rescue[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 20-30.
[4] Jia-qi ZENG,Dian-hai WANG. Improved numerical method for two-way arterial signal coordinate control[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2386-2394.
[5] Xin-wei MA,Yan-jie JI,Xue JIN,Yang XU,Rui-ming CAO. Analysis on travel characteristics of bike-sharing users and influence factors on way to travel[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1202-1209.
[6] Kai LU,Xin TIAN,Guan-rong LIN,Xing-dong DENG. Simultaneous optimization model of signal phase design and timing at intersection[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 921-930.
[7] Wen-tao ZHU,Guo-min QIAN,Dong-fang MA,Dian-hai WANG. Bus delay model considering influence of stop at upstream of intersection[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 796-803.
[8] Chao SUN,Meng-hui LI,Fei HAN. Traffic evolution model with multi-source data of intelligent highway[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 546-556.
[9] Xiu-juan TIAN,De-xin YU,Hu-xing ZHOU,Xue XING,Shi-guang WANG. Dynamic control subdivision based on improved Newman algorithm[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 950-956.
[10] Si-jia ZHANG,Shun-ping JIA,Bao-hua MAO,Cun-rui MA,Tong ZHANG. Influence of passenger trip distance distribution on competitiveness of bus lines in urban rail transit network[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 292-298.
[11] NI Ling-lin, ZHANG Shuai-chao, CHEN Xi-qun. Spatial effects of urban travel using cellular signaling data[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 887-895.
[12] QU Zhao-wei, CAO Ning-bo, CHEN Yong-heng, BAI Qiao-wen, KANG Meng, CHEN Ming-tao. Leading pedestrian intervals modeling at signalized intersections[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 538-544.
[13] WANG Han qi, CHEN Hong, FENG Wei, LIU Wei wei. Multi-dimensional travel decision model of heterogeneous commuters based on Cumulative Prospect Theory[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 297-303.
[14] WANG Fu jian, GONG Cheng yu, MA Dong fang, Guo Wei wei, WANG Dian hai. Signal coordination control for traffic bottleneck using OD data[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 273-278.
[15] YU Qian, LI Tie zhu, REN Yan ming. Influence of passenger load on diesel bus emission[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 2009-2017.