Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (4): 640-648    DOI: 10.3785/j.issn.1008-973X.2022.04.002
    
Partitioned green-wave control scheme for long arterial considering breakpoint cost
Jia-jie YU1(),Yan-jie JI1,2,3,*(),Qing BU4,Yue-biao ZHENG5
1. School of Transportation, Southeast University, Nanjing 211189, China
2. Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies and Jiangsu Key Laboratory of Intelligent Transportation, Southeast University, Nanjing 211189, China
3. National Demonstration Center for Experimental Road and Traffic Engineering Education, Southeast University, Nanjing 211189, China
4. Les International (Minsk) Information Technology Limited Company, Minsk 220030, Belarus
5. Nanjing Les International Information Technology Limited Company, Nanjing 210000, China
Download: HTML     PDF(986KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An algorithm was proposed to optimize the subsystems partition method and signal coordination scheme for the long arterial considering breakpoint cost based on the classical signal coordination scheme model in order to prevent the occurrence of few or infeasible bandwidth in a long arterial signal coordination progression. Whether each intersection is a green wave segmentation point was described by a series of binary variables. The bandwidth and loop integer constraints in the algorithm were revised according to the different coordination connection between two intersections which belong to a same subsystem or not. The actual bandwidth sum with the loss at the beginning of each subsystem was taken as the optimization objective by considering the bandwidth loss at the breakpoint between two subsystems. The subsystems partition and signal coordination scheme for long arterial considering breakpoint cost was proposed. Results show that proposed model can effectively increase the subsystem bandwidth and improve the main arterial efficiency by comparing the solutions of MAXBAND-81 with proposed model. The optimal subsystem partition method and the maximum bandwidth sum can be obtained by proposed model in the global scope when the limit number of subsystems cannot be determined before operation.



Key wordstraffic engineering      partitioned green-wave control      mixed integer program      arterial signal coordination scheme      MAXBAND     
Received: 20 May 2021      Published: 24 April 2022
CLC:  U 491  
Fund:  国家重点研发计划-政府间国际科技创新合作资助项目(2018YFE0120100)
Corresponding Authors: Yan-jie JI     E-mail: jiajieyu@seu.edu.cn;jiyanjie@seu.edu.cn
Cite this article:

Jia-jie YU,Yan-jie JI,Qing BU,Yue-biao ZHENG. Partitioned green-wave control scheme for long arterial considering breakpoint cost. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 640-648.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.04.002     OR     https://www.zjujournals.com/eng/Y2022/V56/I4/640


考虑断点成本的长干线分段绿波控制方法

为了解决交叉口数量较多的长干线绿波控制中绿波带宽较小或无可行带宽的问题,在经典双向绿波控制模型算法的基础上,建立考虑断点成本的长干线分段绿波控制算法. 通过0-1状态变量描述各交叉口是否为绿波分段点,根据同一子段内部交叉口与不同子段之间交叉口的带宽关系及绿波传递关系,调整优化求解算法中的带宽约束与整环约束,考虑绿波分段点处的带宽损失,以不含子段首个交叉口带宽的实际长干线带宽总和为优化目标,构建考虑断点成本的长干线分段绿波控制求解算法. 通过算例,对比MAXBAND-81经典模型与所提方法的求解结果. 研究结果表明,相对于MAXBAND-81,利用所提算法能够有效地提高长干线协调控制绿波带宽,提升长干线主路的通行效率;当无法确定分段数限制时,利用所提方法可以在全局范围内求得最优的绿波分段划分方法与长干线最大带宽和.


关键词: 交通工程,  分段绿波控制,  混合整数规划,  干线协调控制,  MAXBAND模型 
Fig.1 Time-space diagram of green-wave control comparison
Fig.2 Partition method of long arterial
Fig.3 Time-space diagram of green-wave control
交叉口编号 东进口流量/(pcu·h?1) 西进口流量/( pcu·h?1) 南进口流量/( pcu·h?1) 北进口流量/( pcu·h?1)
左转 直行 右转 左转 直行 右转 左转 直行 右转 左转 直行 右转
1 147 2523 297 30 534 63 60 1029 120 96 807 48
2 138 2328 273 30 519 60 72 1200 141 75 645 39
3 126 2163 255 30 489 57 57 945 111 129 1101 66
4 120 2 043 240 27 438 51 78 1332 156 120 1014 60
5 117 1 971 231 24 423 51 51 870 102 84 705 42
6 108 1 833 216 24 408 48 45 750 87 90 771 45
7 102 1710 201 24 393 45 42 690 81 93 798 48
8 93 1602 189 24 390 45 36 636 75 69 582 33
9 87 1482 174 21 381 45 33 579 69 87 729 42
10 81 1392 165 24 384 45 33 537 63 72 600 36
11 75 1296 153 24 396 48 30 492 57 51 423 24
12 69 1194 141 24 411 48 27 450 54 57 489 30
13 66 1110 129 24 417 48 36 621 72 63 528 30
14 63 1056 123 24 420 48 33 585 69 72 609 36
15 60 1017 120 24 423 51 33 558 66 78 654 39
16 57 987 117 27 453 54 27 450 54 36 312 18
17 54 915 108 30 486 57 24 414 48 45 369 21
18 51 855 102 30 516 60 36 594 69 42 354 21
19 48 822 96 33 561 66 30 519 60 30 249 15
20 45 777 90 36 612 72 24 414 48 48 399 24
Tab.1 Traffic volume data of long arterial
Fig.4 Distribution of long arterial intersections
Fig.5 Lane division at intersection
交叉口序号 MAXBAND-81 M2(c = 5)
周期时长/s 相位差/周期 带宽/周期 周期时长/s 相位差/周期 子段编号 带宽/周期
1 150 0.26+0.18 80 1 0.51+0.29
2 150 0.05 0.26+0.18 80 0.05 1 0.51+0.29
3 150 0.01 0.26+0.18 80 0.08 1 0.51+0.29
4 150 0.99 0.26+0.18 80 0.16 1 0.51+0.29
5 150 0.90 0.26+0.18 80 0.14 1 0.51+0.29
6 150 0.08 0.26+0.18 80 0.38 2 0.59+0.28
7 150 0.49 0.26+0.18 80 0.55 2 0.59+0.28
8 150 0.37 0.26+0.18 80 0.72 3 0.58+0.19
9 150 0.67 0.26+0.18 80 0.77 3 0.58+0.19
10 150 0.55 0.26+0.18 80 0.88 3 0.58+0.19
11 150 0.99 0.26+0.18 80 0.91 3 0.58+0.19
12 150 0.84 0.26+0.18 80 0.14 4 0.51+0.30
13 150 0.95 0.26+0.18 80 0.20 4 0.51+0.30
14 150 0.19 0.26+0.18 80 0.19 4 0.51+0.30
15 150 0.13 0.26+0.18 80 0.27 4 0.51+0.30
16 150 0.99 0.26+0.18 80 0.28 4 0.51+0.30
17 150 0.05 0.26+0.18 80 0.25 4 0.51+0.30
18 150 0.55 0.26+0.18 80 0.53 5 0.49+0.08
19 150 0.49 0.26+0.18 80 0.68 5 0.49+0.08
20 150 0.52 0.26+0.18 80 0.70 5 0.49+0.08
Tab.2 Results of MAXBAND-81 and M2
Fig.6 Time-space diagram of MAXBAND and proposed model
交叉口序号
c = 4 c = 6 c = 10
周期时长/s 子段编号 带宽/周期 周期时长/s 子段编号 带宽/周期 周期时长/s 子段编号 带宽/周期
1 150 1 0.51+0.29 150 1 0.51+0.29 150 1 0.51+0.29
2 150 1 0.51+0.29 150 1 0.51+0.29 150 1 0.51+0.29
3 150 1 0.51+0.29 150 1 0.51+0.29 150 1 0.51+0.29
4 150 1 0.51+0.29 150 1 0.51+0.29 150 1 0.51+0.29
5 150 1 0.51+0.29 150 1 0.51+0.29 150 1 0.51+0.29
6 150 2 0.56+0 150 2 0.59+0.28 150 2 0.59+0.28
7 150 2 0.56+0 150 2 0.59+0.28 150 2 0.59+0.28
8 150 2 0.56+0 150 3 0.58+0.19 150 3 0.58+0.19
9 150 2 0.56+0 150 3 0.58+0.19 150 3 0.58+0.19
10 150 2 0.56+0 150 3 0.58+0.19 150 3 0.58+0.19
11 150 2 0.56+0 150 3 0.58+0.19 150 3 0.58+0.19
12 150 3 0.51+0.30 150 4 0.51+0.30 150 4 0.51+0.30
13 150 3 0.51+0.30 150 4 0.51+0.30 150 4 0.51+0.30
14 150 3 0.51+0.30 150 4 0.51+0.30 150 4 0.51+0.30
15 150 3 0.51+0.30 150 4 0.51+0.30 150 4 0.51+0.30
16 150 3 0.51+0.30 150 4 0.51+0.30 150 4 0.51+0.30
17 150 3 0.51+0.30 150 4 0.51+0.30 150 4 0.51+0.30
18 150 4 0.49+0.08 150 5 0.49+0.08 150 5 0.49+0.08
19 150 4 0.49+0.08 150 5 0.49+0.08 150 5 0.49+0.08
20 150 4 0.49+0.08 150 5 0.49+0.08 150 5 0.49+0.08
Tab.3 Results of M2 with different c value
控制模型 vavg/(km·h?1) ttr/s D/(104 s)
MAXBAND 29.51 1287.02 47.13
分段绿波 31.47 1095.99 33.39
Tab.4 Main arterial performance
Fig.7 Travel charcteristics of main outbound links
[1]   ZHANG C, XIE Y, GARTNER N H, et al AM-band: an asymmetrical multi-band model for arterial traffic signal coordination[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 515- 531
doi: 10.1016/j.trc.2015.04.014
[2]   LE T, KOVáCS P, WALTON N, et al Decentralized signal control for urban road networks[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 431- 450
doi: 10.1016/j.trc.2014.11.009
[3]   LITTLE J D C The synchronization of traffic signals by mixed-integer linear programming[J]. Operations Research, 1966, 14 (4): 568- 594
doi: 10.1287/opre.14.4.568
[4]   LITTLE J D C, KELSON M D, GARTNER N M Maxband: a program for setting signals on arteries and triangular networks[J]. Transportation Research Record, 1981, 795: 40- 46
[5]   GARTNER N H, ASSMANN S F, LASAGA F, et al Multiband-a variable-bandwidth arterial progression scheme[J]. Transportation Research Record, 1990, 1287: 212- 222
[6]   TIAN Z, URBANIK T System partition technique to improve signal coordination and traffic progression[J]. Journal of Transportation Engineering-ASCE, 2007, 133 (2): 119- 128
doi: 10.1061/(ASCE)0733-947X(2007)133:2(119)
[7]   ZHANG L, SONG Z, TANG X, et al Signal coordination models for long arterials and grid networks[J]. Transportation Research Part C-emerging Technologies, 2016, 71: 215- 230
doi: 10.1016/j.trc.2016.07.015
[1] Ning-bo CAO,Li-ying ZHAO. Decision-making method of autonomous vehicles for right of way on road segments[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 118-127.
[2] Zhong-yu WANG,Ling WANG,Yan-li WANG,Bing WU. Traffic congestion prevention method during large-scale special events based on variable network topology optimization[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 358-366.
[3] Ze-qiang ZHANG,Pei-yu XU,Jin JIANG,Yu ZHANG. Optimization of parallel disassembly line balancing problem with different operators between workstations[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1795-1805.
[4] Kai LU,Xin TIAN,Guan-rong LIN,Xing-dong DENG. Simultaneous optimization model of signal phase design and timing at intersection[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 921-930.
[5] Jia-qi ZENG,Dian-hai WANG. Improved numerical method for two-way arterial signal coordinate control[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2386-2394.
[6] Si-jia ZHANG,Shun-ping JIA,Bao-hua MAO,Cun-rui MA,Tong ZHANG. Influence of passenger trip distance distribution on competitiveness of bus lines in urban rail transit network[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 292-298.
[7] GONG Yue, LUO Xiao-Qin, WANG Dian-hai, YANG Shao-hui. Urban travel time prediction based on gradient boosting regression tress[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 453-460.
[8] ZHOU Jian, SHI De-xiao. Integrated resilient supply chain with contingency planning for supply disruption[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 240-246.
[9] SHANG Qiang, LIN Ci-yun, YANG Zhao-sheng, BING Qi-chun, XING Ru-ru. Traffic incident detection based on variable selection and kernel extreme learning machine[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1339-1346.
[10] WANG Han qi, CHEN Hong, FENG Wei, LIU Wei wei. Multi-dimensional travel decision model of heterogeneous commuters based on Cumulative Prospect Theory[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 297-303.
[11] YU De-xin, TIAN Xiu-juan, YANG Zhao-sheng, ZHOU Xi-yang, CHENG Ze-yang. Improved arterial coordinated signal control optimization model[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 2019-2029.
[12] ZHOU Dan, MA Xiao long, JIN Sheng, WANG Dian hai. Modeling influencing factors of vehicle passing rate #br# in mixed bicycle traffic flow[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1672-1678.
[13] SUN Wen-cai, YANG Zhi-fa, LI Shi-wu, XU Yi, GUO Meng-zhu, WEI Xue-xin. Driver fixation area division oriented DBSCAN-MMC method[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1455-1461.
[14] LI Shi-wu, XU Yi, WANG Lin-hong, SUN Wen-cai, BIE Yi-ming. Gravitational search algorithm based adaptive low emission signal timing[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1313-1318.