Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (6): 1220-1231    DOI: 10.3785/j.issn.1008-973X.2022.06.021
    
Hybrid prediction model of building energy consumption based on neural network
Jun-qi YU1(),Si-yuan YANG2,An-jun ZHAO1,*(),Zhi-kun GAO2
1. School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2. School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Download: HTML     PDF(1618KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A hybrid prediction model which combining radial basis function (RBF) neural network optimized by tree-seed algorithm (TSA) and long short-term memory (LSTM) neural network was proposed, in order to improve the accuracy, robustness, and generalization ability of building energy consumption prediction. Firstly, the complete ensemble empirical mode decomposition with adaptive noise algorithm was used to decompose the building energy consumption data into a group of intrinsic mode function (IMF) components and a residual component, and the components were divided into high-frequency components and low-frequency components by sample entropy algorithm. Then, least absolute contraction and selection operator (LASSO) method was used for feature selection. Finally, the RBF model optimized by the TSA algorithm and the LSTM model were used to predict the low-frequency components and high-frequency components respectively, and the final prediction results were obtained by superposition and reconstruction. Model evaluation results showed that the accuracy of the hybrid prediction model was 98.72%. Compared with RBF, TSA-RBF, and LSTM models, the prediction effect of the hybrid model is better. Meanwhile, the model has strong robustness and generalization ability, and can be more effectively used for hourly building electricity consumption prediction.



Key wordsbuilding energy consumption prediction      neural network      hybrid prediction model      ensemble empirical mode decomposition      feature selection     
Received: 16 November 2021      Published: 30 June 2022
CLC:  TP 183  
Fund:  咸阳机场三期扩建工程绿色能源站系统智能管控咨询与顾问项目(20210103);国家重点研发计划项目(2017YFC0704100)
Corresponding Authors: An-jun ZHAO     E-mail: junqiyu@126.com;zhao_anjun@163.com
Cite this article:

Jun-qi YU,Si-yuan YANG,An-jun ZHAO,Zhi-kun GAO. Hybrid prediction model of building energy consumption based on neural network. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1220-1231.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.06.021     OR     https://www.zjujournals.com/eng/Y2022/V56/I6/1220


基于神经网络的建筑能耗混合预测模型

为了提升建筑能耗预测的精度、鲁棒性和泛化能力,提出树种算法(TSA)优化的径向基函数(RBF)神经网络与长短时记忆(LSTM)神经网络结合的混合预测模型. 采用基于自适应噪声的完全集成经验模态分解算法,将建筑能耗数据分解为1组本征模态函数(IMF)分量和1个残余分量,利用样本熵算法将各分量划分为高频分量和低频分量. 采用最小绝对收缩与选择算子(LASSO)方法进行特征选择. 分别利用TSA算法优化后的RBF模型与LSTM模型对低频分量和高频分量进行预测,并叠加重构得到最终预测结果. 模型评估结果表明,混合预测模型的精度为98. 72%. 相比于RBF、TSA-RBF、LSTM模型,所提模型的预测效果更好,且具有较强的鲁棒性和泛化能力,能够更为有效地用于建筑逐时电力能耗预测.


关键词: 建筑能耗预测,  神经网络,  混合预测模型,  集成经验模态分解,  特征选择 
Fig.1 Flow chart of energy consumption data decomposition by CEEMDAN
Fig.2 Structure of RBF neural network
Fig.3 Flow chart of TSA algorithm
Fig.4 Structure of LSTM neural network
Fig.5 Modeling process of TSA-RBF-LSTM
变量名称 符号 单位
流动人员数量 β 1 人/m 2
照明使用 β 2 kW·h
电气使用 β 3 kW·h
室外干球温度 β 4
室外湿球温度 β 5
室外露点温度 β 6
室外相对湿度 β 7 %
风速 β 8 m/s
风向 β 9 (°)
太阳辐照度 β 10 W/m 2
上一时刻太阳辐照度 β 11 W/m 2
上一时刻能耗 β 12 kW·h
能耗 W S kW·h
Tab.1 Input and output variables in sample data
Fig.6 Sample data of building energy consumption
Fig.7 Decomposition results of building energy consumption by CEEMDAN
IMF分量 所选特征
IMF 1 β 1β 2β 3β 4β 7β 8β 10β 11β 12
IMF 2 β 1β 2β 3β 4β 7β 11β 12
IMF 3 β 1β 2β 3β 4β 5β 7β 11β 12
IMF 4 β 1β 2β 3β 4β 11β 12
IMF 5 β 1β 2β 3β 11β 12
IMF 6 β 1β 3β 11β 12
IMF 7 β 1β 3β 11β 12
IMF 8 β 1β 2β 3β 4β 7β 11β 12
IMF 9 β 1β 2β 3β 4β 7β 11β 12
Tab.2 Feature selection results by LASSO
Fig.8 Relationship between tuning parameter $\lambda $ and each component ${\;\beta _i}$ of coefficient vector
子算法 参数符号 说明 数值
TSA N pop 种群规模 50
ST 搜索趋势 0. 1
d 优化维数 n+( n+1) m
M iter 最大迭代次数 500
RBF n 输入层神经元数量 特征数
m 隐含层神经元数量 n
c 中心取值范围 [?5.0,5.0]
b 基宽取值范围 [0. 01,10.00]
w 权值取值范围 [?2.0,2.0]
LSTM N IU 输入层神经元数量 特征数
N HU 隐含层神经元个数 16 N IU
R IL 初始学习率 0. 005
M E 最大训练次数 200
Tab.3 Parameter setting of TSA-RBF-LSTM model
Fig.9 Comparison of predictive results for four prediction models
Fig.10 Correlation of actual values and predicted values for four models
预测模型 E RMSE E MAPE/%
RBF 26.5549 5.37
TSA-RBF 15.7670 2.96
LSTM 18.6225 3.36
TSA-RBF-LSTM 6.8925 1.28
Tab.4 Comparison of prediction accuracy for four models
预测模型 是否CEEMDAN分解 E RMSE E MAPE/%
RBF 27.254 7 5.41
42.362 5 8.79
LSTM 19.392 1 3.32
28.745 9 5.68
Tab.5 Comparison of prediction accuracy for two models
Fig.11 Comparison of predictive results of RBF and LSTM for each order of IMF components
Fig.12 Iterative comparison of different optimization algorithms
Fig.13 Absolute error box-plot of four models
Fig.14 Proof of generalization ability
[1]   中国建筑节能协会 中国建筑能耗研究报告2020[J]. 建筑节能(中英文), 2021, 49 (2): 1- 6
China Association of Building Energy Efficiency China building energy consumption annual report 2020[J]. Building Energy Efficiency, 2021, 49 (2): 1- 6
[2]   DONG Z, LIU J, LIU B, et al Hourly energy consumption prediction of an office building based on ensemble learning and energy consumption pattern classification[J]. Energy and Buildings, 2021, 241: 110929
doi: 10.1016/j.enbuild.2021.110929
[3]   AMASYALI K, EL-GOHARY N M A review of date-driven building energy consumption prediction studies[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1192- 1205
doi: 10.1016/j.rser.2017.04.095
[4]   ILBEIGI M, GHOMEISHI M, DEHGHANBANADAKI A Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm[J]. Sustainable Cities and Society, 2020, 61: 102325
doi: 10.1016/j.scs.2020.102325
[5]   MOHANDES S R, ZHANG X, MAHDIYAR A A comprehensive review on the application of artificial neural networks in building energy analysis[J]. Neurocomputing, 2019, 340: 55- 75
doi: 10.1016/j.neucom.2019.02.040
[6]   BOROWSKI M, ZWOLIŃSKA K Prediction of cooling energy consumption in hotel building using machine learning techniques[J]. Energies, 2020, 13 (23): 1- 19
[7]   JOVANOVIĆ R Ž, SRETENOVIĆ A A, ŽIVKOVIĆ B D Ensemble of various neural networks for prediction of heating energy consumption[J]. Energy and Buildings, 2015, 94: 189- 199
doi: 10.1016/j.enbuild.2015.02.052
[8]   WANG Z, HONG T, PIETTE M A Data fusion in predicting internal heat gains for office buildings through a deep learning approach[J]. Applied Energy, 2019, 240: 386- 398
doi: 10.1016/j.apenergy.2019.02.066
[9]   邵光成, 章坤, 王志宇, 等 基于IABC-RBF神经网络的地下水埋深预测模型[J]. 浙江大学学报: 工学版, 2019, 53 (7): 1323- 1330
SHAO Guang-cheng, ZHANG Kun, WANG Zhi-yu, et al Groundwater depth prediction model based on IABC-RBF neural network[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (7): 1323- 1330
[10]   LI K, SU H, CHU J Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: a comparative study[J]. Energy and Buildings, 2011, 43 (10): 2893- 2899
doi: 10.1016/j.enbuild.2011.07.010
[11]   ZHOU G, MOAYEDI H, BAHIRAEI M, et al Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings[J]. Journal of Cleaner Production, 2020, 254: 120082
doi: 10.1016/j.jclepro.2020.120082
[12]   HUANG Y, LI C Accurate heating, ventilation and air conditioning system load prediction for residential buildings using improved ant colony optimization and wavelet neural network[J]. Journal of Building Engineering, 2021, 35: 101972
doi: 10.1016/j.jobe.2020.101972
[13]   GAO X, QI C, XUE G, et al Forecasting the heat load of residential buildings with heat metering based on CEEMDAN-SVR[J]. Energies, 2020, 13 (22): 6079
doi: 10.3390/en13226079
[14]   DING Y, ZHANG Q, YUAN T, et al Model input selection for building heating load prediction: a case study for an office building in Tianjin[J]. Energy and Buildings, 2018, 159: 254- 270
doi: 10.1016/j.enbuild.2017.11.002
[15]   LIU M D, DING L, BAI Y L Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction[J]. Energy Conversion and Management, 2021, 233: 113917
doi: 10.1016/j.enconman.2021.113917
[16]   KIRAN M S TSA: tree-seed algorithm for continuous optimization[J]. Expert Systems with Applications, 2015, 42 (19): 6686- 6698
doi: 10.1016/j.eswa.2015.04.055
[17]   XI Z, XU A, KOU Y, et al Target maneuver trajectory prediction based on RBF neural network optimized by hybrid algorithm[J]. Journal of Systems Engineering and Electronics, 2021, 32 (2): 498- 516
doi: 10.23919/JSEE.2021.000042
[18]   CHEN G, TANG B, ZENG X, et al Short-term wind speed forecasting based on long short-term memory and improved BP neural network[J]. International Journal of Electrical Power and Energy Systems, 2022, 134: 107365
doi: 10.1016/j.ijepes.2021.107365
[19]   TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise [C]// 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague: IEEE, 2011: 4144-4147.
[20]   TIBSHIRANI R Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodological), 1996, 58 (1): 267- 288
doi: 10.1111/j.2517-6161.1996.tb02080.x
[21]   HUANG N E, SHEN Z, LONG S R, et al The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society Series A: Mathematical, Physical and Engineering Sciences, 1998, 454 (1971): 903- 995
doi: 10.1098/rspa.1998.0193
[22]   SUN H, ZHAI W, WANG Y, et al Privileged information-driven random network based non-iterative integration model for building energy consumption prediction[J]. Applied Soft Computing, 2021, 108: 107438
doi: 10.1016/j.asoc.2021.107438
[23]   RICHMAN J S, MOORMAN J R Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology: Heart and Circulatory Physiology, 2000, 278 (6): H2039- H2049
doi: 10.1152/ajpheart.2000.278.6.H2039
[24]   施莹, 林建辉, 庄哲, 等 基于振动信号时频分解-样本熵的受电弓裂纹故障诊断[J]. 振动与冲击, 2019, 38 (8): 180- 187
SHI Ying, LIN Jian-hui, ZHUANG Zhe, et al Fault diagnosis for pantograph cracks based on time-frequency decomposition and sample entropy of vibration signals[J]. Journal of Vibration and Shock, 2019, 38 (8): 180- 187
[25]   WU Q, LIN H Daily urban air quality index forecasting based on variational mode decomposition, sample entropy and LSTM neural network[J]. Sustainable Cities and Society, 2019, 50: 101657
doi: 10.1016/j.scs.2019.101657
[26]   SUN Y, HAGHIGHAT F, FUNG B C M A review of the-state-of-the-art in data-driven approaches for building energy prediction[J]. Energy and Buildings, 2020, 221: 110022
doi: 10.1016/j.enbuild.2020.110022
[27]   GAO Z, YU J, ZHAO A, et al A hybrid method of cooling load forecasting for large commercial building based on extreme learning machine[J]. Energy, 2022, 238: 122073
doi: 10.1016/j.energy.2021.122073
[28]   韩波, 李衡, 王志波, 等 气溶胶光学厚度估测中的LASSO特征选择方法[J]. 武汉大学学报:信息科学版, 2018, 43 (4): 536- 541
HAN Bo, LI Heng, WANG Zhi-bo, et al A feature selection approach via LASSO for aerosol optical thickness estimation[J]. Geomatics and Information Science of Wuhan University, 2018, 43 (4): 536- 541
[29]   李鱼强, 潘天红, 李浩然, 等 近红外光谱LASSO特征选择方法及其聚类分析应用研究[J]. 光谱学与光谱分析, 2019, 39 (12): 3809- 3815
LI Yu-qiang, PAN Tian-hong, LI Hao-ran, et al NIR spectral feature selection using LASSO method and its application in the classification analysis[J]. Spectroscopy and Spectral Analysis, 2019, 39 (12): 3809- 3815
[30]   EFRON B, HASTIE T, JOHNSTONE I, et al. Least angle regression [EB/OL]. [2021-10-27]. https://hastie.su.domains/Papers/LARS/LeastAngle_2002.pdf.
[31]   甘敏, 彭晓燕, 彭辉 RBF神经网络参数估计的两种混合优化算法[J]. 控制与决策, 2009, 24 (8): 1172- 1176
GAN Min, PENG Xiao-yan, PENG Hui Two hybrid parameter optimization algorithms for RBF neural networks[J]. Control and Decision, 2009, 24 (8): 1172- 1176
doi: 10.3321/j.issn:1001-0920.2009.08.010
[32]   YANG Z, MOURSHED M, LIU K, et al A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting[J]. Neurocomputing, 2020, 397: 415- 421
doi: 10.1016/j.neucom.2019.09.110
[33]   KOSE E Optimal control of AVR system with tree seed algorithm-based PID controller[J]. IEEE Access, 2020, 8: 89457- 89467
doi: 10.1109/ACCESS.2020.2993628
[34]   DUAN J, WANG P, MA W, et al A novel hybrid model based on nonlinear weighted combination for short-term wind power forecasting[J]. International Journal of Electrical Power and Energy Systems, 2022, 134: 107452
doi: 10.1016/j.ijepes.2021.107452
[35]   KINGMA D P, BA J L. Adam: a method for stochastic optimization [EB/OL]. [2021-10-27]. https://arxiv.org/pdf/1412.6980.pdf.
[36]   BALAJI E, BRINDHA D, ELUMALAI V K, et al Automatic and non-invasive Parkinson's disease diagnosis and severity rating using LSTM network[J]. Applied Soft Computing, 2021, 108: 107463
doi: 10.1016/j.asoc.2021.107463
[37]   CHANG Z, ZHANG Y, CHEN W Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform[J]. Energy, 2019, 187: 115804
doi: 10.1016/j.energy.2019.07.134
[38]   尹爱军, 赵磊, 吴宏钢 相关法动平衡校正中的3σ准则误差处理方法[J]. 重庆大学学报, 2013, 36 (10): 22- 26
YIN Ai-jun, ZHAO Lei, WU Hong-gang Error process based on 3σ rule used in balancing by correlation theory[J]. Journal of Chongqing University, 2013, 36 (10): 22- 26
[39]   胡沛然, 陈少辉 权重归一化拉格朗日插值及其空间降尺度应用[J]. 遥感信息, 2019, 34 (6): 63- 71
HU Pei-ran, CHEN Shao-hui Weight normalization based Lagrange interpolation and its application in downscaling[J]. Remote Sensing Information, 2019, 34 (6): 63- 71
doi: 10.3969/j.issn.1000-3177.2019.06.011
[1] Zhu-peng WEN,Jie CHEN,Lian-hua LIU,Ling-ling JIAO. Fault diagnosis of wind power gearbox based on wavelet transform and improved CNN[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1212-1219.
[2] Li HE,Shan-min PANG. Face reconstruction from voice based on age-supervised learning and face prior information[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1006-1016.
[3] Yun-hao WANG,Ming-hui SUN,Yi XIN,Bo-xuan ZHANG. Robot tactile recognition system based on piezoelectric film sensor[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 702-710.
[4] Ze-kang WU,Shan ZHAO,Hong-wei LI,Yi-rui JIANG. Spatial global context information network for semantic segmentation of remote sensing image[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 795-802.
[5] Yang-zhao CHEN,Wei-na YUAN. Deep learning aided multi-user detection for up-link grant-free NOMA[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 816-822.
[6] Ke-wen ZHANG,Bai-song PAN. Control design of spacecraft autonomous rendezvous using nonlinear models with uncertainty[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 833-842.
[7] Ruo-ran CHENG,Xiao-li ZHAO,Hao-jun ZHOU,Han-chen YE. Review of Chinese font style transfer research based on deep learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 510-519, 530.
[8] Ting WANG,Xiao-fei ZHU,Gu TANG. Knowledge-enhanced graph convolutional neural networks for text classification[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 322-328.
[9] Pei-zhi WEN,Jun-mou CHEN,Yan-nan XIAO,Ya-yuan WEN,Wen-ming HUANG. Underwater image enhancement algorithm based on GAN and multi-level wavelet CNN[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 213-224.
[10] Guang-long LI,De-rong SHEN,Tie-zheng NIE,Yue KOU. Learning query optimization method based on multi model outside database[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 288-296.
[11] Song REN,Qian-wen ZHU,Xin-yue TU,Chao DENG,Xiao-shu WANG. Lining disease identification of highway tunnel based on deep learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 92-99.
[12] Fa-ming HUANG,Li-han PAN,Chi YAO,Chuang-bing ZHOU,Qing-hui JIANG,Zhi-lu CHANG. Landslide susceptibility prediction modelling based on semi-supervised machine learning[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1705-1713.
[13] Wei HUANG,Tian CHEN,Ru-jun WU. Short term load forecasting based on gated recurrent unit and error correction[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1625-1633.
[14] Nan ZHANG,Hong-zhao DONG,Yi-ni SHE. Seq2Seq prediction of bus trajectory on exclusive bus lanes[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1482-1489.
[15] Fei WANG,Wei-xiang XU. Improved model of road impedance function based on LSTM neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1065-1071.