|
|
Bearing life prediction based on multi-scale features and attention mechanism |
Ren-peng MO(),Xiao-sheng SI*(),Tian-mei LI,Xu ZHU |
College of Missile Engineering, Rocket Force University of Engineering, Xi’an 710025, China |
|
|
Abstract A bearing RUL prediction method based on multi-scale features and attention mechanism was proposed aiming at the problem that the previous remaining useful life (RUL) prediction methods were insufficient in mining bearing degradation information and ignored the difference in the contribution of different features, which affected the prediction accuracy. Several time-domain and frequency-domain features of the original bearing vibration signal at multiple scales were calculated as the input feature set. The multi-scale feature set was input into the network, and the attention module was used to adaptively assign the best weights to different features. Then the convolutional neural network (CNN) module was used for deep feature extraction and multi-scale feature fusion. The RUL prediction value was obtained through the feedforward neural network (FNN) module mapping. The proposed method was applied to the public bearing datasets for comparative studies. Results showed the superior prediction performance of the proposed method.
|
Received: 06 July 2021
Published: 26 July 2022
|
|
Fund: 国家自然科学基金资助项目(61773386,62073336);国家自然科学基金优秀青年资助项目(61922089) |
Corresponding Authors:
Xiao-sheng SI
E-mail: renpengmo@163.com;sxs09@mails.tsinghua.edu.cn
|
基于多尺度特征与注意力机制的轴承寿命预测
针对以往剩余使用寿命(RUL)预测方法对轴承退化信息挖掘不充分、忽视不同特征贡献度差异,影响预测准确性的问题,提出基于多尺度特征与注意力机制的轴承RUL预测方法. 在多个尺度下计算轴承原始振动信号的若干时域和频域特征,作为输入特征集. 将多尺度特征集输入到网络中,以注意力模块为不同特征自适应地分配最佳权重,以卷积神经网络(CNN)模块进行深层特征提取与多尺度特征融合,通过前馈神经网络(FNN)模块映射得到RUL预测值. 通过公开的轴承数据集进行实验验证,与其他RUL预测方法相比,所提方法的预测性能更优越.
关键词:
剩余使用寿命预测,
多尺度特征,
注意力机制,
卷积神经网络(CNN),
轴承
|
|
[1] |
乔美英, 汤夏夏, 闫书豪, 等 基于改进稀疏滤波与深度网络融合的轴承故障诊断[J]. 浙江大学学报: 工学版, 2020, 54 (12): 2301- 2309 QIAO Mei-ying, TANG Xia-xia, YAN Shu-hao, et al Bearing fault diagnosis based on improved sparse filtering and deep network fusion[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (12): 2301- 2309
|
|
|
[2] |
程卫东, 赵德尊 用于滚动轴承转频估计的 EMD 软阈值降噪算法[J]. 浙江大学学报: 工学版, 2016, 50 (3): 428- 435 CHENG Wei-dong, ZHAO De-zun EMD soft-thresholding denoising algorithm for rolling element bearing rotational frequency estimation[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (3): 428- 435
|
|
|
[3] |
PECHT M. Prognostics and health management of electronics [M]. Hoboken: Wiley, 2008.
|
|
|
[4] |
李天梅, 司小胜, 刘翔, 等. 大数据下数模联动的随机退化设备剩余寿命预测技术[EB/OL]. [2021-06-30]. https://doi.org/10.16383/j.aas.c201068. LI Tian-mei, SI Xiao-sheng, LIU Xiang, et al. Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data [EB/OL]. [2021-06-30]. https://doi.org/10. 16383/j.aas.c201068.
|
|
|
[5] |
LU C J, MEEKER W O Using degradation measures to estimate a time-to-failure distribution[J]. Technometrics, 1993, 35 (2): 161- 174
doi: 10.1080/00401706.1993.10485038
|
|
|
[6] |
LIAO G, YIN H, CHEN M, et al Remaining useful life prediction for multi-phase deteriorating process based on Wiener process[J]. Reliability Engineering and System Safety, 2021, 207: 107361
doi: 10.1016/j.ress.2020.107361
|
|
|
[7] |
SI X S, LI T M, ZANG Q, et al Prognostics for linear stochastic degrading systems with survival measurements[J]. IEEE Transactions on Industrial Electronics, 2020, 67 (4): 3202- 3215
doi: 10.1109/TIE.2019.2908617
|
|
|
[8] |
王泽洲, 陈云翔, 蔡忠义, 等 基于复合非齐次泊松过程的不完美维修设备剩余寿命预测[J]. 机械工程学报, 2020, 56 (22): 14- 23 WANG Ze-zhou, CHEN Yun-xiang, CAI Zhong-yi, et al Prediction of remaining life of imperfect maintenance equipment based on compound inhomogeneous Poisson process[J]. Journal of Mechanical Engineering, 2020, 56 (22): 14- 23
doi: 10.3901/JME.2020.22.014
|
|
|
[9] |
KUNDU P, DARPE A K, KULKARNI M S Weibull accelerated failure time regression model for remaining useful life prediction of bearing working under multiple operating conditions[J]. Mechanical Systems and Signal Processing, 2019, 143: 106302
|
|
|
[10] |
裴洪, 胡昌华, 司小胜, 等 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报, 2019, 55 (8): 1- 13 PEI Hong, HU Chang-hua, SI Xiao-sheng, et al Overview of equipment remaining life prediction methods based on machine learning[J]. Journal of Mechanical Engineering, 2019, 55 (8): 1- 13
doi: 10.3901/JME.2019.08.001
|
|
|
[11] |
唐旭, 徐卫晓, 谭继文, 等. 基于LSTM的滚动轴承剩余使用寿命预测 [J]. 机械设计, 2019, 36(增1): 117-119. TANG Xu, XU Wei-xiao, TAN Ji-wen, et al. Prediction of remaining service life of rolling bearing based on LSTM [J]. Journal of Machine Design, 2019, 36(supple. 1): 117-119.
|
|
|
[12] |
王玉静, 李少鹏, 康守强, 等 结合CNN和LSTM的滚动轴承剩余使用寿命预测方法[J]. 振动. 测试与诊断, 2021, 41 (3): 439- 446 WANG Yu-jing, LI Shao-peng, KANG Shou-qiang, et al Combining CNN and LSTM to predict the remaining service life of rolling bearings[J]. Journal of Vibration, Measurement and Diagnosis, 2021, 41 (3): 439- 446
|
|
|
[13] |
张钢, 田福庆, 佘博, 等 一种基于特定频段信息熵和RBM的健康因子构建方法[J]. 振动与冲击, 2020, 39 (6): 147- 153 ZHANG Gang, TIAN Fu-qing, SHE Bo, et al A health factor construction method based on information entropy and RBM in specific frequency bands[J]. Journal of Vibration and Shock, 2020, 39 (6): 147- 153
|
|
|
[14] |
CHENG Y, PENG G, ZHU Z, et al A novel deep learning method based on attention mechanism for bearing remaining useful life prediction[J]. Applied Soft Computing, 2020, 86: 105919
doi: 10.1016/j.asoc.2019.105919
|
|
|
[15] |
LI X, DING Q, SUN J Q Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering and System Safety, 2018, 172: 1- 11
doi: 10.1016/j.ress.2017.11.021
|
|
|
[16] |
LUONG M T, PHAM H, MANNING C D. Effective approaches to attention-based neural machine translation [EB/OL]. [2021-06-30]. https://arxiv.org/abs/1508.04025.
|
|
|
[17] |
郭宝震, 左万利, 王英 采用词向量注意力机制的双路卷积神经网络句子分类模型[J]. 浙江大学学报: 工学版, 2018, 52 (9): 1729- 1737 GUO Bao-zhen, ZUO Wan-li, WANG Ying Two-way convolutional neural network sentence classification model using word vector attention mechanism[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (9): 1729- 1737
|
|
|
[18] |
BAHDANAU D, CHOROWSKI J, SERDYUK D, et al. End-to-end attention-based large vocabulary speech recognition [C]// International Conference on Acoustics, Speech and Signal Processing. Shanghai: IEEE, 2016: 4945-4949.
|
|
|
[19] |
雍子叶, 郭继昌, 李重仪 融入注意力机制的弱监督水下图像增强算法[J]. 浙江大学学报: 工学版, 2021, 55 (3): 555- 562 YONG Zi-ye, GUO Ji-chang, LI Chong-yi Weakly supervised underwater image enhancement algorithm incorporating attention mechanism[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (3): 555- 562
|
|
|
[20] |
BA J, MNIH V, KAVUKCUOGLU K. Multiple object recognition with visual attention [EB/OL]. [2021-06-30]. https://arxiv.org/abs/1412.7755.
|
|
|
[21] |
SONG Y, GAO S, LI Y, et al Distributed Attention-based temporal convolutional network for remaining useful life prediction[J]. IEEE Internet of Things Journal, 2020, 8 (12): 9594- 9602
|
|
|
[22] |
NECTOUX P, GOURIVEAU R, MEDJAHER K, et al. PRONOSTIA: an experimental platform for bearings accelerated degradation tests [C]// IEEE International Conference on Prognostics and Health Management. Piscataway: IEEE, 2012: 1-8.
|
|
|
[23] |
SOUALHI A, MEDJAHER K, ZERHOUNI N Bearing health monitoring based on Hilbert–Huang transform, support vector machine, and regression[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 64 (1): 52- 62
|
|
|
[24] |
REN L, CUI J, SUN Y, et al Multi-bearing remaining useful life collaborative prediction: a deep learning approach[J]. Journal of Manufacturing Systems, 2017, 43: 248- 256
doi: 10.1016/j.jmsy.2017.02.013
|
|
|
[25] |
张继冬, 邹益胜, 邓佳林, 等 基于全卷积层神经网络的轴承剩余寿命预测[J]. 中国机械工程, 2019, 30 (18): 2231- 2235 ZHANG Ji-dong, ZOU Yi-sheng, DENG Jia-lin, et al Bearing remaining life prediction based on fully convolutional neural network[J]. China Mechanical Engineering, 2019, 30 (18): 2231- 2235
|
|
|
[26] |
孙鑫, 孙维堂 基于多尺度卷积神经网络的轴承剩余寿命预测[J]. 组合机床与自动化加工技术, 2020, (10): 168- 171 SUN Xin, SUN Wei-tang Prediction of bearing remaining life based on multi-scale convolutional neural network[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2020, (10): 168- 171
|
|
|
[27] |
韩林洁, 石春鹏, 张建超 基于BiLSTM的滚动轴承剩余使用寿命预测[J]. 制造业自动化, 2020, 42 (5): 47- 50 HAN Lin-jie, SHI Chun-peng, ZHANG Jian-chao Prediction of remaining service life of rolling bearing based on BiLSTM[J]. Manufacturing Automation, 2020, 42 (5): 47- 50
doi: 10.3969/j.issn.1009-0134.2020.05.011
|
|
|
[28] |
曹正志, 叶春明 基于并联CNN-SE-Bi-LSTM的轴承剩余使用寿命预测[J]. 计算机应用研究, 2021, 38 (7): 2103- 2107 CAO Zheng-zhi, YE Chun-ming Bearing remaining service life prediction based on parallel CNN-SE-Bi-LSTM[J]. Application Research of Computers, 2021, 38 (7): 2103- 2107
|
|
|
[29] |
WANG Biao, LEI Ya-guo, LI Nai-peng, et al A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2018, 69 (1): 401- 412
|
|
|
[30] |
GAL Y, GHAHRAMANI Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning [C]// International Conference on Machine Learning. New York: [s. n.], 2016: 1050-1059.
|
|
|
[31] |
牟含笑, 郑建飞, 胡昌华, 等. 基于CDBN与BiLSTM的多元退化设备剩余寿命预测[EB/OL]. [2021-08-26]. http://kns.cnki.net/kcms/detail/11.1929.v. 20210510.1354.004.html. MOU Han-xiao, ZHENG Jian-fei, HU Chang-hua, et al. Residual life prediction of multivariate degraded equipment based on CDBN and BiLSTM [EB/OL]. [2021-08-26]. http://kns.cnki.net/kcms/detail/11.1929.v.20210510.1354.004.html.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|