Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (7): 1447-1456    DOI: 10.3785/j.issn.1008-973X.2022.07.020
    
Bearing life prediction based on multi-scale features and attention mechanism
Ren-peng MO(),Xiao-sheng SI*(),Tian-mei LI,Xu ZHU
College of Missile Engineering, Rocket Force University of Engineering, Xi’an 710025, China
Download: HTML     PDF(1709KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A bearing RUL prediction method based on multi-scale features and attention mechanism was proposed aiming at the problem that the previous remaining useful life (RUL) prediction methods were insufficient in mining bearing degradation information and ignored the difference in the contribution of different features, which affected the prediction accuracy. Several time-domain and frequency-domain features of the original bearing vibration signal at multiple scales were calculated as the input feature set. The multi-scale feature set was input into the network, and the attention module was used to adaptively assign the best weights to different features. Then the convolutional neural network (CNN) module was used for deep feature extraction and multi-scale feature fusion. The RUL prediction value was obtained through the feedforward neural network (FNN) module mapping. The proposed method was applied to the public bearing datasets for comparative studies. Results showed the superior prediction performance of the proposed method.



Key wordsremaining useful life prediction      multi-scale feature      attention mechanism      convolutional neural network (CNN)      bearing     
Received: 06 July 2021      Published: 26 July 2022
CLC:  TH 133  
Fund:  国家自然科学基金资助项目(61773386,62073336);国家自然科学基金优秀青年资助项目(61922089)
Corresponding Authors: Xiao-sheng SI     E-mail: renpengmo@163.com;sxs09@mails.tsinghua.edu.cn
Cite this article:

Ren-peng MO,Xiao-sheng SI,Tian-mei LI,Xu ZHU. Bearing life prediction based on multi-scale features and attention mechanism. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1447-1456.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.07.020     OR     https://www.zjujournals.com/eng/Y2022/V56/I7/1447


基于多尺度特征与注意力机制的轴承寿命预测

针对以往剩余使用寿命(RUL)预测方法对轴承退化信息挖掘不充分、忽视不同特征贡献度差异,影响预测准确性的问题,提出基于多尺度特征与注意力机制的轴承RUL预测方法. 在多个尺度下计算轴承原始振动信号的若干时域和频域特征,作为输入特征集. 将多尺度特征集输入到网络中,以注意力模块为不同特征自适应地分配最佳权重,以卷积神经网络(CNN)模块进行深层特征提取与多尺度特征融合,通过前馈神经网络(FNN)模块映射得到RUL预测值. 通过公开的轴承数据集进行实验验证,与其他RUL预测方法相比,所提方法的预测性能更优越.


关键词: 剩余使用寿命预测,  多尺度特征,  注意力机制,  卷积神经网络(CNN),  轴承 
Fig.1 Procedure of remaining life prediction
Fig.2 Extraction of multi-scale feature
Fig.3 Schematic diagram of time window
Fig.4 Overall network structure
Fig.5 Attention mechanism
工况 nr/(r·min?1) F/N
1 1 800 4 000
2 1 650 4 200
3 1 500 5 000
Tab.1 Working condition details of experimental data
Fig.6 Vibration acceleration amplitudes of bearing full-life
网络模块 网络层 超参数设置
注意力模块 全连接层 U = K
CNN模块 卷积层1 n = 32,k = 6,s = 1
CNN模块 卷积层2 n = 64,k = 6,s = 1
CNN模块 卷积层3 n = 64,k = 6,s = 1
CNN模块 卷积层4 n = 64,k = 6,s = 1
FNN模块 隐藏层1 U = 100
FNN模块 dropout层 r = 0.2
FNN模块 隐藏层2 U = 20
FNN模块 输出层 U = 1
Tab.2 Network hyperparameters
Fig.7 RMSE and MAE under different time window sizes
评价指标 RMSE MAE
尺度1 0.034 0 0.029 5
尺度1+注意力 0.031 7 0.027 3
尺度2 0.032 2 0.028 5
尺度2+注意力 0.030 3 0.026 4
尺度4 0.027 4 0.023 4
尺度4+注意力 0.026 8 0.021 9
多尺度 0.024 4 0.019 9
多尺度+注意力 0.021 2 0.016 7
Tab.3 Evaluation metrics in ablation experiment
Fig.8 Comparison of evaluation metrics for ablation experiments
Fig.9 Prediction effect of different single-scale models
多尺度组合 RMSE MAE ttr/s tte/s
1-2-4 0.021 2 0.016 7 4.64 2.73
1-2-4-8 0.022 6 0.019 3 7.15 3.99
1-2-4-8-16 0.021 1 0.017 4 11.20 5.20
Tab.4 Prediction effect of various multi-scale combinations
网络 RMSE MAE ttr/s tte/s
DNN 0.065 6 0.057 7 1.32 0.91
CNN 0.030 7 0.026 0 5.05 2.47
MSCNN 0.023 1 0.018 6 52.00 8.69
BiLSTM 0.058 4 0.045 1 4.49 11.45
CNN-LSTM 0.056 0 0.046 2 51.00 44.48
本文方法 0.021 2 0.016 7 4.64 2.73
Tab.5 Evaluation metrics of various methods
Fig.10 Comparison of prediction results of various methods
网络 轴承2-3 轴承3-1
RMSE MAE RMSE MAE
DNN 0.360 7 0.330 0 0.348 9 0.322 6
CNN 0.118 4 0.103 8 0.341 7 0.334 7
BiLSTM 0.165 8 0.135 9 0.229 4 0.210 1
本文方法 0.044 1 0.034 6 0.075 8 0.061 8
原训练集 0.448 6 0.426 8 0.438 9 0.420 9
Tab.6 Prediction performance of bearings under different operating conditions
Fig.11 RUL prediction curve of bearing under different operating conditions
网络 轴承1-1 轴承2-2 轴承3-2
RMSE MAE RMSE MAE RMSE MAE
DNN 0.205 2 0.176 9 0.249 1 0.206 1 0.303 2 0.246 7
CNN 0.153 4 0.125 3 0.113 4 0.088 7 0.228 7 0.203 9
BiLSTM 0.144 8 0.123 5 0.102 6 0.088 7 0.207 9 0.164 9
本文方法 0.098 6 0.083 6 0.054 8 0.045 3 0.104 4 0.077 6
Tab.7 Prediction effect of different methods in XJTU-SY bearing data set
Fig.12 RUL prediction curve of test-set bearings (XJTU-SY)
Fig.13 RUL prediction uncertainty measurement of bearing 1-3 (FEMTO-st)
[1]   乔美英, 汤夏夏, 闫书豪, 等 基于改进稀疏滤波与深度网络融合的轴承故障诊断[J]. 浙江大学学报: 工学版, 2020, 54 (12): 2301- 2309
QIAO Mei-ying, TANG Xia-xia, YAN Shu-hao, et al Bearing fault diagnosis based on improved sparse filtering and deep network fusion[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (12): 2301- 2309
[2]   程卫东, 赵德尊 用于滚动轴承转频估计的 EMD 软阈值降噪算法[J]. 浙江大学学报: 工学版, 2016, 50 (3): 428- 435
CHENG Wei-dong, ZHAO De-zun EMD soft-thresholding denoising algorithm for rolling element bearing rotational frequency estimation[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (3): 428- 435
[3]   PECHT M. Prognostics and health management of electronics [M]. Hoboken: Wiley, 2008.
[4]   李天梅, 司小胜, 刘翔, 等. 大数据下数模联动的随机退化设备剩余寿命预测技术[EB/OL]. [2021-06-30]. https://doi.org/10.16383/j.aas.c201068.
LI Tian-mei, SI Xiao-sheng, LIU Xiang, et al. Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data [EB/OL]. [2021-06-30]. https://doi.org/10. 16383/j.aas.c201068.
[5]   LU C J, MEEKER W O Using degradation measures to estimate a time-to-failure distribution[J]. Technometrics, 1993, 35 (2): 161- 174
doi: 10.1080/00401706.1993.10485038
[6]   LIAO G, YIN H, CHEN M, et al Remaining useful life prediction for multi-phase deteriorating process based on Wiener process[J]. Reliability Engineering and System Safety, 2021, 207: 107361
doi: 10.1016/j.ress.2020.107361
[7]   SI X S, LI T M, ZANG Q, et al Prognostics for linear stochastic degrading systems with survival measurements[J]. IEEE Transactions on Industrial Electronics, 2020, 67 (4): 3202- 3215
doi: 10.1109/TIE.2019.2908617
[8]   王泽洲, 陈云翔, 蔡忠义, 等 基于复合非齐次泊松过程的不完美维修设备剩余寿命预测[J]. 机械工程学报, 2020, 56 (22): 14- 23
WANG Ze-zhou, CHEN Yun-xiang, CAI Zhong-yi, et al Prediction of remaining life of imperfect maintenance equipment based on compound inhomogeneous Poisson process[J]. Journal of Mechanical Engineering, 2020, 56 (22): 14- 23
doi: 10.3901/JME.2020.22.014
[9]   KUNDU P, DARPE A K, KULKARNI M S Weibull accelerated failure time regression model for remaining useful life prediction of bearing working under multiple operating conditions[J]. Mechanical Systems and Signal Processing, 2019, 143: 106302
[10]   裴洪, 胡昌华, 司小胜, 等 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报, 2019, 55 (8): 1- 13
PEI Hong, HU Chang-hua, SI Xiao-sheng, et al Overview of equipment remaining life prediction methods based on machine learning[J]. Journal of Mechanical Engineering, 2019, 55 (8): 1- 13
doi: 10.3901/JME.2019.08.001
[11]   唐旭, 徐卫晓, 谭继文, 等. 基于LSTM的滚动轴承剩余使用寿命预测 [J]. 机械设计, 2019, 36(增1): 117-119.
TANG Xu, XU Wei-xiao, TAN Ji-wen, et al. Prediction of remaining service life of rolling bearing based on LSTM [J]. Journal of Machine Design, 2019, 36(supple. 1): 117-119.
[12]   王玉静, 李少鹏, 康守强, 等 结合CNN和LSTM的滚动轴承剩余使用寿命预测方法[J]. 振动. 测试与诊断, 2021, 41 (3): 439- 446
WANG Yu-jing, LI Shao-peng, KANG Shou-qiang, et al Combining CNN and LSTM to predict the remaining service life of rolling bearings[J]. Journal of Vibration, Measurement and Diagnosis, 2021, 41 (3): 439- 446
[13]   张钢, 田福庆, 佘博, 等 一种基于特定频段信息熵和RBM的健康因子构建方法[J]. 振动与冲击, 2020, 39 (6): 147- 153
ZHANG Gang, TIAN Fu-qing, SHE Bo, et al A health factor construction method based on information entropy and RBM in specific frequency bands[J]. Journal of Vibration and Shock, 2020, 39 (6): 147- 153
[14]   CHENG Y, PENG G, ZHU Z, et al A novel deep learning method based on attention mechanism for bearing remaining useful life prediction[J]. Applied Soft Computing, 2020, 86: 105919
doi: 10.1016/j.asoc.2019.105919
[15]   LI X, DING Q, SUN J Q Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering and System Safety, 2018, 172: 1- 11
doi: 10.1016/j.ress.2017.11.021
[16]   LUONG M T, PHAM H, MANNING C D. Effective approaches to attention-based neural machine translation [EB/OL]. [2021-06-30]. https://arxiv.org/abs/1508.04025.
[17]   郭宝震, 左万利, 王英 采用词向量注意力机制的双路卷积神经网络句子分类模型[J]. 浙江大学学报: 工学版, 2018, 52 (9): 1729- 1737
GUO Bao-zhen, ZUO Wan-li, WANG Ying Two-way convolutional neural network sentence classification model using word vector attention mechanism[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (9): 1729- 1737
[18]   BAHDANAU D, CHOROWSKI J, SERDYUK D, et al. End-to-end attention-based large vocabulary speech recognition [C]// International Conference on Acoustics, Speech and Signal Processing. Shanghai: IEEE, 2016: 4945-4949.
[19]   雍子叶, 郭继昌, 李重仪 融入注意力机制的弱监督水下图像增强算法[J]. 浙江大学学报: 工学版, 2021, 55 (3): 555- 562
YONG Zi-ye, GUO Ji-chang, LI Chong-yi Weakly supervised underwater image enhancement algorithm incorporating attention mechanism[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (3): 555- 562
[20]   BA J, MNIH V, KAVUKCUOGLU K. Multiple object recognition with visual attention [EB/OL]. [2021-06-30]. https://arxiv.org/abs/1412.7755.
[21]   SONG Y, GAO S, LI Y, et al Distributed Attention-based temporal convolutional network for remaining useful life prediction[J]. IEEE Internet of Things Journal, 2020, 8 (12): 9594- 9602
[22]   NECTOUX P, GOURIVEAU R, MEDJAHER K, et al. PRONOSTIA: an experimental platform for bearings accelerated degradation tests [C]// IEEE International Conference on Prognostics and Health Management. Piscataway: IEEE, 2012: 1-8.
[23]   SOUALHI A, MEDJAHER K, ZERHOUNI N Bearing health monitoring based on Hilbert–Huang transform, support vector machine, and regression[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 64 (1): 52- 62
[24]   REN L, CUI J, SUN Y, et al Multi-bearing remaining useful life collaborative prediction: a deep learning approach[J]. Journal of Manufacturing Systems, 2017, 43: 248- 256
doi: 10.1016/j.jmsy.2017.02.013
[25]   张继冬, 邹益胜, 邓佳林, 等 基于全卷积层神经网络的轴承剩余寿命预测[J]. 中国机械工程, 2019, 30 (18): 2231- 2235
ZHANG Ji-dong, ZOU Yi-sheng, DENG Jia-lin, et al Bearing remaining life prediction based on fully convolutional neural network[J]. China Mechanical Engineering, 2019, 30 (18): 2231- 2235
[26]   孙鑫, 孙维堂 基于多尺度卷积神经网络的轴承剩余寿命预测[J]. 组合机床与自动化加工技术, 2020, (10): 168- 171
SUN Xin, SUN Wei-tang Prediction of bearing remaining life based on multi-scale convolutional neural network[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2020, (10): 168- 171
[27]   韩林洁, 石春鹏, 张建超 基于BiLSTM的滚动轴承剩余使用寿命预测[J]. 制造业自动化, 2020, 42 (5): 47- 50
HAN Lin-jie, SHI Chun-peng, ZHANG Jian-chao Prediction of remaining service life of rolling bearing based on BiLSTM[J]. Manufacturing Automation, 2020, 42 (5): 47- 50
doi: 10.3969/j.issn.1009-0134.2020.05.011
[28]   曹正志, 叶春明 基于并联CNN-SE-Bi-LSTM的轴承剩余使用寿命预测[J]. 计算机应用研究, 2021, 38 (7): 2103- 2107
CAO Zheng-zhi, YE Chun-ming Bearing remaining service life prediction based on parallel CNN-SE-Bi-LSTM[J]. Application Research of Computers, 2021, 38 (7): 2103- 2107
[29]   WANG Biao, LEI Ya-guo, LI Nai-peng, et al A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2018, 69 (1): 401- 412
[30]   GAL Y, GHAHRAMANI Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning [C]// International Conference on Machine Learning. New York: [s. n.], 2016: 1050-1059.
[31]   牟含笑, 郑建飞, 胡昌华, 等. 基于CDBN与BiLSTM的多元退化设备剩余寿命预测[EB/OL]. [2021-08-26]. http://kns.cnki.net/kcms/detail/11.1929.v. 20210510.1354.004.html.
MOU Han-xiao, ZHENG Jian-fei, HU Chang-hua, et al. Residual life prediction of multivariate degraded equipment based on CDBN and BiLSTM [EB/OL]. [2021-08-26]. http://kns.cnki.net/kcms/detail/11.1929.v.20210510.1354.004.html.
[1] Xiao-wu TANG,Yuan ZOU,Wei-kang LIN,Wen-fang ZHAO,Tian-qi WANG. Model experiment on improving bearing capacity of perforated pipe piles by vacuum consolidation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1320-1327.
[2] You-wei WANG,Shuang TONG,Li-zhou FENG,Jian-ming ZHU,Yang LI,Fu CHEN. New inductive microblog rumor detection method based on graph convolutional network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 956-966.
[3] Peng GAO,Xue-bo ZENG,Yi-long WU,Fei PENG. Axial compression bearing capacity of steel reinforced concrete rectangular columns confined by carbon fiber reinforced polymer[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 890-900, 908.
[4] Xiao-chen JU,Xin-xin ZHAO,Sheng-sheng QIAN. Self-attention mechanism based bridge bolt detection algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 901-908.
[5] Xue-qin ZHANG,Tian-ren LI. Breast cancer pathological image classification based on Cycle-GAN and improved DPN network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 727-735.
[6] Meng XU,Dan WANG,Zhi-yuan LI,Yuan-fang CHEN. IncepA-EEGNet: P300 signal detection method based on fusion of Inception network and attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 745-753, 782.
[7] Chang-yuan LIU,Xian-ping HE,Xiao-jun BI. Efficient network vehicle recognition combined with attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 775-782.
[8] Qiao-hong CHEN,Hao-lei PEI,Qi SUN. Image caption based on relational reasoning and context gate mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 542-549.
[9] Yuan-jun NONG,Jun-jie WANG,Hong CHEN,Wen-han SUN,Hui GENG,Shu-yue LI. A image caption method of construction scene based on attention mechanism and encoding-decoding architecture[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 236-244.
[10] Ying-li LIU,Rui-gang WU,Chang-hui YAO,Tao SHEN. Construction method of extraction dataset of Al-Si alloy entity relationship[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 245-253.
[11] Xin WANG,Qiao-hong CHEN,Qi SUN,Yu-bo JIA. Visual question answering method based on relational reasoning and gating mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 36-46.
[12] Hui WANG,Xiao-lin HUAN,Yu-qi CHEN,Bo ZHOU,Shi-feng XUE,Ying-song LIN. Macro-mesoscopic Duncan-Chang damage model for hydrate-bearing sediments considering coupling effect of temperature-pore pressure condition[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1734-1743.
[13] Wei WANG,Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU. Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1407-1418.
[14] Zhi-chao CHEN,Hai-ning JIAO,Jie YANG,Hua-fu ZENG. Garbage image classification algorithm based on improved MobileNet v2[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1490-1499.
[15] Zi-ye YONG,Ji-chang GUO,Chong-yi LI. weakly supervised underwater image enhancement algorithm incorporating attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 555-562.