Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (7): 1320-1327    DOI: 10.3785/j.issn.1008-973X.2022.07.007
    
Model experiment on improving bearing capacity of perforated pipe piles by vacuum consolidation
Xiao-wu TANG1,2(),Yuan ZOU1,2,Wei-kang LIN1,2,Wen-fang ZHAO1,2,Tian-qi WANG1,2
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Engineering Research Center of Urban Underground Development of Zhejiang Province, Hangzhou 310058, China
Download: HTML     PDF(2108KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Vacuum consolidation model tests were conducted in order to analyze the growth degree in bearing capacity of pile foundation, the variation of shear strength and water content of soil around the pile, as well as the water discharge of surrounding soil. The Q-s curves of model piles and the distributions of vane shear strength and water content of soil around piles, and curves of water drainage with time were obtained. Results show that the vacuum consolidation technology can increase the bearing capacity of pile foundation by 2.7 times under the conditions of the tests, and form a dense layer around the pile, which is 4.5 cm thick with relatively high shear strength and relatively low water content. The influence of holes layout was analyzed. The bearing capacity of pile foundation was greatly affected by the spacing of hole layers, but little affected by dimension of holes.



Key wordsperforated pipe pile      vacuum consolidation      bearing capacity      clay     
Received: 06 July 2021      Published: 26 July 2022
CLC:  TU 473  
Fund:  国家自然科学基金资助项目(51779218);浙江省水利科技计划资助项目(RB2027)
Cite this article:

Xiao-wu TANG,Yuan ZOU,Wei-kang LIN,Wen-fang ZHAO,Tian-qi WANG. Model experiment on improving bearing capacity of perforated pipe piles by vacuum consolidation. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1320-1327.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.07.007     OR     https://www.zjujournals.com/eng/Y2022/V56/I7/1320


开孔管桩真空固结提高承载力模型试验

为了研究桩基承载力的增长程度、桩周土的抗剪强度和含水率变化规律、桩周土排水量,开展真空固结模型试验,得到模型桩的Q-s曲线、桩周土的十字板强度和含水率的分布规律、排水量随时间的增长曲线. 结果表明,在该试验条件下,开孔管桩真空固结技术可以使桩基承载力提高2.7倍,使桩周形成厚4.5 cm、较高抗剪强度、较低含水率的致密层. 研究桩身开孔布置的影响,得出桩基承载力的增长程度受开孔层间距的影响较大,受孔径的影响很小.


关键词: 开孔管桩,  真空固结,  承载力,  黏土 
Fig.1 Schematic diagram of vaccum consolidation device
Fig.2 Physical picture of vaccum consolidation device
试验组 模型桩 开孔参数
排数 孔径/mm 层间距/cm
P0 无孔
P1 7 7 7.5
P2 3 7 15
P3 5 7 10
P4 7 7 7.5
P5 9 7 6
P6 11 7 5
P7 5 5 10
P8 5 7 10
P9 5 9 10
Tab.1 Parameters of holes in model piles
Fig.3 Model piles in test group Ⅰ
参数 数值 参数 数值
ww /% 59.68 Sr /% 98.4
Gs 2.69 wL /% 49.2
γ/(kN·m?3) 16.3 wp /% 27.1
e 1.64 k/(cm·s?1) 1.4×10?7
Tab.2 Basic physical parameters of soil sample
Fig.4 e-p curve of soil sample
Fig.5 Curve of water discharge with vacuum time in model pile P1
Fig.6 Loading stage of single pile static load test
Fig.7 Test points arrangement of vane shear strength and water content
Fig.8 Q-s curve of model piles in test group Ⅰ
Fig.9 Q-s curve of model piles in test group Ⅱ and Ⅲ
Fig.10 Distribution of vane shear strength of soil around model pile P1
Fig.11 Vane shear strength of column E test points in test group Ⅱ and Ⅲ
Fig.12 Distribution of water content of soil around model pile P1
Fig.13 Water content of columnF test points in test group Ⅱ and Ⅲ
[1]   刘松玉, 周建, 章定文, 等 地基处理技术进展[J]. 土木工程学报, 2020, 53 (4): 93- 110
LIU Song-yu, ZHOU Jian, ZHANG Ding-wen, et al State of the art of the ground improvement technology in China[J]. China Civil Engineering Journal, 2020, 53 (4): 93- 110
[2]   吴燕开, 方磊, 李新伟, 等 预应力管桩联合塑料排水板加固软土地基技术探讨[J]. 岩石力学与工程学报, 2006, (Supple.2): 3572- 3576
WU Yan-kai, FANG Lei, LI Xin-wei, et al Technical discussion on tube pile combined with prefabricated strip drain to soft soil treatment[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, (Supple.2): 3572- 3576
[3]   宋义仲, 马凤生, 赵西久, 等. 填芯管桩水泥土复合基桩的施工方法: CN102127910A [P]. 2011-07-20.
SONG Yi-zhong, MA Feng-sheng, ZHAO Xi-jiu, et al. The construction method of the composite pile composed of jet-mixing cement and PHC pile with core concrete: CN102127910A [P]. 2011-07-20.
[4]   宋义仲, 卜发东, 程海涛, 等 管桩水泥土复合基桩承载性能试验研究[J]. 工程质量, 2012, 30 (5): 12- 16
SONG Yi-zhong, BU Fa-dong, CHENG Hai-tao, et al Experimental study on bearing properties of tubular cement composite pile[J]. Construction Quality, 2012, 30 (5): 12- 16
doi: 10.3969/j.issn.1671-3702.2012.05.004
[5]   李俊才, 张永刚, 邓亚光, 等 管桩水泥土复合桩荷载传递规律研究[J]. 岩石力学与工程学报, 2014, 33 (Supple.1): 3068- 3076
LI Jun-cai, ZHANG Yong-gang, DENG Ya-guang, et al Load transfer mechanism of composite pile composed of jet-mixing cement and PHC pile with core concrete[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (Supple.1): 3068- 3076
[6]   张永刚, 李俊才, 邓亚光 管桩水泥土复合桩荷载传递机制试验研究[J]. 南京工业大学学报:自然科学版, 2013, 35 (6): 79- 85
ZHANG Yong-gang, LI Jun-cai, DENG Ya-guang Experimental study of load transfer mechanism of composite pile of jet-mixing cement and PHC pile[J]. Journal of Nanjing University of Technology: Natural Science Edition, 2013, 35 (6): 79- 85
[7]   刘汉龙. 一种抗液化排水刚性桩: CN2873886Y [P]. 2007-02-28.
LIU Han-long. A kind of rigid drainage pile of mitigation of liquefaction: CN2873886Y [P]. 2007-02-28.
[8]   杨耀辉, 陈育民, 刘汉龙, 等 排水刚性桩单桩抗液化性能的振动台试验研究[J]. 岩土工程学报, 2018, 40 (2): 287- 295
YANG Yao-hui, CHEN Yu-min, LIU Han-long, et al Shaking table tests on liquefaction resistance performance of single rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (2): 287- 295
doi: 10.11779/CJGE201802009
[9]   杨耀辉, 陈育民, 刘汉龙, 等 排水刚性桩群桩抗液化性能的振动台试验研究[J]. 岩土力学, 2018, 39 (11): 4025- 4032
YANG Yao-hui, CHEN Yu-min, LIU Han-long, et al Investigation on liquefaction resistance performance of rigid-drainage pile groups by shaking table[J]. Rock and Soil Mechanics, 2018, 39 (11): 4025- 4032
[10]   江强, 陈育民, 王翔鹰, 等 排水刚性桩沉桩挤土效应的现场试验研究[J]. 土木工程学报, 2018, 51 (4): 87- 93
JIANG Qiang, CHEN Yu-min, WANG Xiang-ying, et al Field tests on squeezing effects of the rigid-drainage pile[J]. China Civil Engineering Journal, 2018, 51 (4): 87- 93
[11]   WANG S, NI P, CHEN Z, et al Consolidation solution of soil around a permeable pipe pile[J]. Marine Georesources and Geotechnology, 2020, 38 (9): 1097- 1105
doi: 10.1080/1064119X.2019.1655119
[12]   唐晓武, 俞悦, 周力沛, 等. 一种能排水并增大摩阻力的预制管桩及其施工方法: CN104846809A [P]. 2015-08-19.
TANG Xiao-wu, YU Yue, ZHOU Li-pei, et al. A prefabricated pipe pile with drainage and enlarged friction resistance and its construction method: CN104846809A [P]. 2015-08-19.
[13]   唐晓武, 杨晓秋, 俞悦 开孔管桩复合地基排水固结解析解[J]. 岩土力学, 2019, 40 (4): 1248- 1254
TANG Xiao-wu, YANG Xiao-qiu, YU Yue Analytical solutions to drained consolidation of porous pipe pile[J]. Rock and Soil Mechanics, 2019, 40 (4): 1248- 1254
[14]   唐晓武, 柳江南, 杨晓秋, 等 开孔管桩动孔压消散特性的理论研究[J]. 岩土力学, 2019, 40 (9): 3335- 3343
TANG Xiao-wu, LIU Jiang-nan, YANG Xiao-qiu, et al Theoretical study of dynamic pore water pressure dissipation characteristics of open-hole pipe pile[J]. Rock and Soil Mechanics, 2019, 40 (9): 3335- 3343
[15]   黄勇, 王军, 梅国雄 透水管桩加速超静孔压消散的单桩模型试验研究[J]. 岩土力学, 2016, 37 (10): 2893- 2898
HUANG Yong, WANG Jun, MEI Guo-xiong Model experimental study of accelerating dissipation of excess pore water pressure in soil around a permeable pipe pile[J]. Rock and Soil Mechanics, 2016, 37 (10): 2893- 2898
[16]   NI P, MANGALATHU S, MEI G X, et al Laboratory investigation of pore pressure dissipation in clay around permeable piles[J]. NRC Research Press, 2017, 55 (9): 1257- 1267
[17]   NI P, MANGALATHU S, MEI G X, et al Permeable piles: an alternative to improve the performance of driven piles[J]. Computers and Geotechnics, 2017, 84: 78- 87
doi: 10.1016/j.compgeo.2016.11.021
[18]   陈科林, 雷金波 有孔管桩开孔应力集中系数试验研究[J]. 岩土力学, 2015, 36 (4): 1078- 1084
CHEN Ke-lin, LEI Jin-bo Experimental study of stress concentration factors of hollow pipe-piles[J]. Rock and Soil Mechanics, 2015, 36 (4): 1078- 1084
[19]   NI P, MANGALATHU S, MEI G X, et al Compressive and flexural behaviour of reinforced concrete permeable piles[J]. Engineering Structures, 2017, 147: 316- 327
doi: 10.1016/j.engstruct.2017.06.007
[20]   乐腾胜, 雷金波, 周星, 等 有孔管桩单桩承载性状试验及分析[J]. 岩土力学, 2016, 37 (Supple.2): 415- 420
YUE Teng-sheng, LEI Jin-bo, ZHOU Xing, et al Test and analysis of bearing capacity behavior of pipe-pile with holes[J]. Rock and Soil Mechanics, 2016, 37 (Supple.2): 415- 420
[21]   孙立强, 闫澍旺, 李伟, 等 超软土真空预压室内模型试验研究[J]. 岩土力学, 2011, 32 (4): 984- 990
SUN Li-qiang, YAN Shu-wang, LI Wei, et al Study of super-soft soil vacuum preloading model test[J]. Rock and Soil Mechanics, 2011, 32 (4): 984- 990
doi: 10.3969/j.issn.1000-7598.2011.04.005
[22]   王军, 蔡袁强, 符洪涛, 等 新型防淤堵真空预压法室与现场试验研究[J]. 岩石力学与工程学报, 2014, 33 (6): 1257- 1268
WANG Jun, CAI Yuan-qiang, FU Hong-tao, et al Indoor and field experiment on vacuum preloading with new anti-clogging measures[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (6): 1257- 1268
[23]   龚晓南, 岑仰润 真空预压加固软土地基机理探讨[J]. 哈尔滨建筑大学学报, 2002, 35 (2): 7- 10
GONG Xiao-nan, CEN Yang-run Mechanism of vacuum preloading[J]. Journal of Harbin University of Civil Engineering and Architecture, 2002, 35 (2): 7- 10
[24]   WANG J, CAI Y, MA J, et al Improved vacuum preloading method for consolidation of dredged clay-slurry fill[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 42 (11): 06016012
[1] Peng GAO,Xue-bo ZENG,Yi-long WU,Fei PENG. Axial compression bearing capacity of steel reinforced concrete rectangular columns confined by carbon fiber reinforced polymer[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 890-900, 908.
[2] Jia-qi JIANG,Ri-qing XU,Zhi-jian QIU,Xiao-bo ZHAN,Yue WANG,Guang-mou CHENG. Egg-shaped elasto-plastic constitutive modeling for over-consolidated clay[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1444-1452.
[3] Wei WANG,Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU. Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1407-1418.
[4] Liang WANG,Hai-jian XIE,Jia-wei WU,Yun-min CHEN,Hao DING. Equivalent model for pollutant transport parameters of layered landfill liners[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 519-529.
[5] Wei YANG,Meng-jian REN,Ren-peng CHEN,Xue-ying LIU,Xin KANG. Salt resistance of modified bentonite in complex environment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1885-1893.
[6] Xiao-dong PAN,Lian-mo ZHOU,Hong-lei SUN,Yuan-qiang CAI,Li SHI,Zong-hao YUAN. Vacuum preloading test for high moisture content slurry using particle image velocimetry[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1078-1085.
[7] Qing-qing ZHENG,Tang-dai XIA,Meng-ya ZHANG,Fei ZHOU. Strain prediction model of undisturbed silty soft clay under intermittent cyclic loading[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 889-898.
[8] Wen-tao HU,Dou LIU,Da-xin GENG,Ning WANG,Chang-jie XU,Xing SHANGGUAN,Jie MIN. Internal force and deformation of step-tapered pile under lateral loads[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 739-747.
[9] Xiao-yan SUN,Gui TANG,Hai-long WANG,Qun WANG,Zhi-cheng ZHANG. Effect of 3D printing path on mechanical properties of arch concrete bridge[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2085-2091.
[10] Jin-feng WANG,Ai-ping ZHANG,Wen-hao WANG. Effects of stud height on shear behavior of stud connectors[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2076-2084.
[11] Dao-sheng LING,Jiang LI,Wen-jun WANG,Cheng-bao HU. Structure of artificial soils and its influence on strain localization[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1689-1696.
[12] Yue-han XIE,Chao-sheng TANG,Bo LIU,Qing CHENG,Li-yang YIN,Ning-jun JIANG,Bin SHI. Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1438-1447.
[13] Xue-ying BAO,Yu-xi ZHENG,Qi-cai WANG. Construction group comprehensive bearing capacity analysis of deep cutting under green construction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 482-491.
[14] WANG Zhong-jin, ZHANG Ri-hong, WANG Kui-hua, FANG Peng-fei, XIE Xin-yu, XU Han-qiang, LI Jin-zhu. Bearing characteristic of static drill rooted pile considering condition of energy carrier[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 11-18.
[15] JIANG Xiang, TONG Gen-shu, ZHANG Lei. Fire resistance and bending bearing capacity of fire-resistant steel-concrete composite beams[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1482-1493.