Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (9): 1689-1696    DOI: 10.3785/j.issn.1008-973X.2019.09.007
Civil and Architecture Engineering     
Structure of artificial soils and its influence on strain localization
Dao-sheng LING1,2(),Jiang LI1,Wen-jun WANG2,*(),Cheng-bao HU1
1. Institute of Geotechnical Engineering, MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
2. School of Civil Engineering and Architecture, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
Download: HTML     PDF(1207KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The artificial soil preparation method and consolidated undrained (CU) shear triaxial test were used. A series of structural soils with structural differences were constructed by adding a small amount of cement and salt grains to the Ningbo coastal silty clay. The CU test results show that the structure of the sample with 2% cement content is similar to the undisturbed Ningbo silty clay, thus achieving the goal of using artificially structured soil to simulate the undisturbed soil. With the increase of cement content, the effective cohesion of the artificially structured soil increases in an approximate exponential form, and there is no obvious change in the effective internal friction angle, and the initial deformation modulus increases. Under the same confining pressure, with the enhancement of soil structure, the specimens are prone to strain localization and shear band failure; the stress-strain curve is more probably to be strain-softened, and the peak stress increases, while the corresponding axial strain shows a decreasing trend. For the same kind of soil, difference in structures has little effect on the inclination angle of shear band, and the prediction value by Mohr-Coulomb theory agrees well with the measured value of the inclination angle of shear band.



Key wordsartificially structured soil      Ningbo coastal silty clay      strain localization      inclination angle of shear band      consolidated undrained shear test     
Received: 30 July 2018      Published: 12 September 2019
CLC:  TU 411  
Corresponding Authors: Wen-jun WANG     E-mail: dsling@zju.edu.cn;wwjcumt@nit.zju.edu.cn
Cite this article:

Dao-sheng LING,Jiang LI,Wen-jun WANG,Cheng-bao HU. Structure of artificial soils and its influence on strain localization. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1689-1696.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.09.007     OR     http://www.zjujournals.com/eng/Y2019/V53/I9/1689


人工制备土的结构性及其对应变局部化的影响

采用人工制备土方法和固结不排水(CU)剪三轴试验开展研究. 通过在宁波滨海粉质黏土中加入少量水泥和盐粒构造多组结构性强弱不同的人工结构性土,固结不排水剪三轴试验结果表明:水泥掺量为2%的试样的结构性与宁波原状粉质黏土最为接近,达到了利用人工制备结构性土来模拟原状土的效果. 随着水泥掺量的增加,人工结构性土的有效黏聚力近似呈指数形式增长,有效内摩擦角没有明显变化,初始变形模量增大. 在相同围压下,随着土体结构性的增强,试样更易发生应变局部化并出现剪切带破坏;应力-应变曲线出现软化,峰值点应力增大且对应轴向应变呈减小趋势. 对于同一种土体,结构性差异对剪切带倾角值影响不大,Mohr-Coulomb理论对剪切带倾角的预估值与实测值较为吻合.


关键词: 人工制备结构性土,  宁波滨海粉质黏土,  应变局部化,  剪切带倾角,  固结不排水剪三轴试验 
Gs w/% e γ/(kN·m?3 ρd/(g·cm?3 wL/% wP/%
2.73 39.0 1.12 17.5 1.29 36.09 20.25
Tab.1 Basic physical properties of Ningbo undisturbed silty clay
人工结构性土 mc / % aw / % 人工结构性土 mc / % aw / %
C0.5 99.5 0.5 C1.5 98.5 1.5
C1.0 99.0 1.0 C2.0 98.0 2.0
Tab.2 Proportion of artificially structured soil
Fig.1 Stress-strain curves of different structural soils
Fig.2 Comparison of stress-strain relationship between different structural soils under same confining pressure
Fig.3 Comparison of pore pressure between different structural soils under same confining pressure
土样 c' / kPa φ' / (°) δA/ %
c' φ'
B 3.9 26.02 ?75.9 16.1
C0.5 4.5 25.90 ?72.2 14.2
C1.0 7.1 24.10 ?56.2 7.5
C1.5 11.8 22.32 ?27.2 ?0.4
C2.0 16.8 23.18 3.7 3.4
A 16.2 22.42 ? ?
Tab.3 Effective shear strength index of different structural soils
Fig.4 Relation between effective cohesion and cement content
Fig.5 Relation between effective internal friction angle and cement content
Fig.6 Difference of initial deformation modulus of structural soils under same confining pressure
Fig.7 Different failure form of samples in consolidated undrained (CU) test
σ3/ kPa A C2.0 C1.5 C1.0 C0.5 B
25 剪切带 剪切带 剪切带 剪切带 鼓胀 鼓胀
50 剪切带 剪切带 剪切带 鼓胀 鼓胀 鼓胀
100 剪切带 剪切带 鼓胀 鼓胀 鼓胀 鼓胀
200 剪切带 剪切带 鼓胀 鼓胀 鼓胀 鼓胀
Tab.4 Failure modes of different structural soil samples
土样 σ3 / kPa θm/(°) θMC/(°) θR/(°) θA/(°) δe / %
θMC θR θA
A 25 54.22 56.21 45 50.61 3.67 ?17.00 ?6.67
50 52.86 56.21 45 50.61 6.34 ?14.87 ?4.27
100 56.98 56.21 45 50.61 ?1.35 ?21.02 ?11.19
200 57.13 56.21 45 50.61 ?1.61 ?21.23 ?11.42
C2.0 25 56.08 56.59 45 50.80 0.91 ?19.76 ?9.42
50 54.47 56.59 45 50.80 3.89 ?17.39 ?6.75
100 52.59 56.59 45 50.80 7.61 ?14.43 ?3.41
200 56.31 56.59 45 50.80 0.50 ?20.09 ?9.79
C1.5 25 53.81 56.16 45 50.58 4.37 ?16.37 ?6.00
50 53.62 56.16 45 50.58 4.74 ?16.08 ?5.67
C1.0 25 55.67 57.05 45 51.03 2.48 ?19.17 ?8.34
Tab.5 Comparison of measured values and theoretical values of inclination angle of shear bands in different structural soil samples
[1]   WANG D, ABRIAK N E Compressibility behavior of dunkirk structured and reconstituted marine soils[J]. Marine Geotechnology, 2015, 33 (5): 419- 428
doi: 10.1080/1064119X.2014.950798
[2]   WANG D, ZENTAR R, ABRIAK N E Interpretation of compression behavior of structured and remolded marine soils[J]. Journal of Materials in Civil Engineering, 2016, 28 (6): 04016005
doi: 10.1061/(ASCE)MT.1943-5533.0001503
[3]   李金柱, 朱向荣, 刘用海 结构性软土弹塑性损伤模型及其应用[J]. 浙江大学学报:工学版, 2010, 44 (4): 806- 811
LI Jin-zhu, ZHU Xiang-rong, LIU Yong-hai Elasto-plastic damage constitutive model and its application to structural soft soil[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (4): 806- 811
[4]   凌道盛, 涂福彬, 卜令方 基于黏聚区域模型的边坡渐进破坏过程强化有限元分析[J]. 岩土工程学报, 2012, 34 (8): 1387- 1393
LING Dao-sheng, TU Fu-bin, BU Ling-fang Enhanced finite element analysis of progressive failure of slopes based on cohesive zone model[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (8): 1387- 1393
[5]   凌道盛, 郭恒, 蔡武军, 等 地铁车站地震破坏离心机振动台模型试验研究[J]. 浙江大学学报:工学版, 2012, 46 (12): 2201- 2209
LING Dao-sheng, GUO Heng, CAI Wu-jun, et al Research on seismic damage of metro station with centrifuge shaking table model test[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (12): 2201- 2209
[6]   MAIO C D, SCARINGI G, VASSALLO R Residual strength and creep behaviour on the slip surface of specimens of a landslide in marine origin clay shales: influence of pore fluid composition[J]. Landslides, 2015, 12 (4): 657- 667
doi: 10.1007/s10346-014-0511-z
[7]   黄茂松, 王卫东, 郑刚 软土地下工程与深基坑研究进展[J]. 土木工程学报, 2012, 45 (6): 146- 161
HUANG Mao-song, WANG Wei-dong, ZHENG Gang A review of recent advances in the underground engineering and deep excavations in soft soils[J]. China Civil Engineering Journal, 2012, 45 (6): 146- 161
[8]   黄茂松 土体稳定与承载特性的分析方法[J]. 岩土工程学报, 2016, (38): 1- 34
HUANG Mao-song Analysis methods for stability and bearing capacity of soils[J]. Chinese Journal of Geotechnical Engineering, 2016, (38): 1- 34
[9]   YANG C, CARTER J P, SHENG D Description of compression behaviour of structured soils and its application[J]. Canadian Geotechnical Journal, 2014, 51 (8): 921- 933
doi: 10.1139/cgj-2013-0265
[10]   KIM T, FINNO R J Anisotropy evolution and irrecoverable deformation in triaxial stress probes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138 (2): 155- 165
[11]   孔令伟, 臧濛, 郭爱国, 等 湛江强结构性黏土强度特性的应力路径效应[J]. 岩土力学, 2015, (s1): 19- 24
KONG Ling-wei, ZANG Meng, GUO Ai-guo, et al Effect of stress path on strength properties of Zhanjiang strong structured clay[J]. Rock and Soil Mechanics, 2015, (s1): 19- 24
[12]   张玉, 邵生俊, 赵敏, 等 平面应变条件下结构性黄土本构模型试验研究[J]. 岩石力学与工程学报, 2018, 37 (2): 485- 496
ZHANG Yu, SHAO Sheng-jun, ZHAO Min, et al Experimental study on constitutive models of structural loess under plane strain conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (2): 485- 496
[13]   ZHANG D M, HUANG H W Analysis of cement-treated clay behavior by micromechanical approach[J]. Frontiers of Structural and Civil Engineering, 2013, 7 (2): 137- 153
doi: 10.1007/s11709-013-0204-z
[14]   ESKISAR T Influence of cement treatment on unconfined compressive strength and compressibility of lean clay with medium plasticity[J]. Arabian Journal for Science and Engineering, 2015, 40 (3): 763- 772
doi: 10.1007/s13369-015-1579-z
[15]   BHARATI S K, CHEW S H Geotechnical behavior of recycled copper slag-cement-treated Singapore marine clay[J]. Geotechnical and Geological Engineering, 2016, 34 (3): 835- 845
doi: 10.1007/s10706-016-0008-8
[16]   谢定义, 齐吉琳, 朱元林 土的结构性参数及其与变形强度的关系[J]. 水利学报, 1999, (10): 1- 6
XIE Ding-yi, QI Ji-lin, ZHU Yuan-lin Soil structure parameter and its relations to deformation and strength[J]. Journal of Hydraulic Engineering, 1999, (10): 1- 6
doi: 10.3321/j.issn:0559-9350.1999.10.001
[17]   李建红, 张其光, 孙逊, 等 胶结和孔隙比对结构性土力学特性的影响[J]. 清华大学学报:自然科学版, 2008, 48 (9): 1431- 1435
LI Jian-hong, ZHANG Qi-guang, SUN Xun, et al Effect of bonding and void ratio on the mechanical behavior of structured soil[J]. Journal of Tsinghua University: Science and Technology, 2008, 48 (9): 1431- 1435
[18]   陈亚军, 罗开泰, 刘恩龙, 等 固结不排水条件下初始应力各向异性结构性土的力学特性[J]. 水利学报, 2015, 46 (4): 460- 470
CHEN Ya-jun, LUO Kai-tai, LIU En-long, et al Mechanical properties of artificially structured soils with stress-induced anisotropy under undrained conditions[J]. Journal of Hydraulic Engineering, 2015, 46 (4): 460- 470
[19]   蒋明镜, 沈珠江 结构性粘土剪切带的微观分析[J]. 岩土工程学报, 1998, 20 (2): 102- 108
JIANG Ming-jing, SHEN Zhu-jiang Microscopic analysis of shear band in structured clay[J]. Chinese Journal of Geotechnical Engineering, 1998, 20 (2): 102- 108
doi: 10.3321/j.issn:1000-4548.1998.02.028
[20]   RUDNICKI J W, RICE J R Conditions for the localization of deformation in pressure-sensitive dilatant materials[J]. Journal of the Mechanics and Physics of Solids, 1975, 23 (6): 371- 394
doi: 10.1016/0022-5096(75)90001-0
[21]   ALSHIBLI K A, AKBAS I S Strain localization in clay: plane strain versus triaxial loading conditions[J]. Geotechnical and Geological Engineering, 2007, 25 (1): 45
[22]   GYLLAND A S, RUESLATTEN H, JOSTAD H P, et al Microstructural observations of shear zones in sensitive clay[J]. Engineering Geology, 2013, 163 (163): 75- 88
[23]   蒋刚, 李苏春, 王旭东 轴对称状态下粘性土剪切带倾角试验[J]. 武汉大学学报:工学版, 2009, 42 (1): 132- 136
JIANG Gang, LI Su-chun, WANG Xu-dong Test on shear band inclination angles in cohesive soils under axisymmetric conditions[J]. Engineering Journal of Wuhan University, 2009, 42 (1): 132- 136
[24]   李蓓. 平面应变仪的研制及上海地区粘性土剪切带形成的试验研究[D]. 上海: 同济大学, 2000.
LI Bei. Development of plane strain apparatus and study on the formation of shear bands in Shanghai clay [D]. Shanghai: Tongji University, 2000.
[25]   ROSCOE K H. The influence of strain in soil mechanics [J]. Geotechnique, 1970, 20(2): 129-170.
[1] HU Cheng-bao, LING Dao-sheng, GONG Shi-lin, SHI Ji-sen, HAN Chao, DING Zhi-feng. Formula for inclination angle of shear band based on soil state and microscopic characteristics in sands[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2068-2076.