Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (5): 889-898    DOI: 10.3785/j.issn.1008-973X.2020.05.006
Civil Engineering, Traffic Engineering     
Strain prediction model of undisturbed silty soft clay under intermittent cyclic loading
Qing-qing ZHENG1,2(),Tang-dai XIA1,2,*(),Meng-ya ZHANG3,Fei ZHOU1,2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
3. Northeast Electric Power Design Institute Co. Ltd of China Power Engineering Consulting Group, Changchun 130000, China
Download: HTML     PDF(1762KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Most present studies on the plastic strain of soft soil under traffic load ignored the trains leaving intervals. Thus, a series of triaxial undrained dynamic tests including continuous and discontinuous vibration on the undisturbed soft clay consolidated along K0 line were carried out, considering different relative deviatoric stress levels and different stop-vibration ratios. The purpose is to study the strain development of undisturbed silty soft clay under long-term intermittent cyclic loading. Analysis results of the continuous vibration test show that the relative deviatoric stress level has no effect on the relationship between the normalized plastic strain growth rate and the vibration times, and only affects the equivalent initial strain. The normalized strain growth rate is significantly reduced, and the vibration times required to be stable are reduced, due to the increase of the strength during the intermittency period. The influence law of the stop-vibration ratio on the normalized plastic strain growth rate was analyzed based on the fitting result of hyperbolic function, and results show that the shape parameter of the curve of normalized strain growth rate versus vibration times is linearly related to the stop-vibration ratio. A long-term strain prediction model considering intermittency effect was established. The model consists of two parts, the equivalent initial plastic strain and the normalized growth rate. This model is proved to work well, and is helpful to calculate and analyze the long-term strain of soft soil foundation under subway load.



Key wordsintermittent cyclic loading      plastic strain      explicit model      undisturbed soft clay      intermittency effect      strain growth rate      initial strain     
Received: 11 April 2019      Published: 05 May 2020
CLC:  TU 435  
Corresponding Authors: Tang-dai XIA     E-mail: zqq0515@zju.edu.cn;xtd@zju.edu.cn
Cite this article:

Qing-qing ZHENG,Tang-dai XIA,Meng-ya ZHANG,Fei ZHOU. Strain prediction model of undisturbed silty soft clay under intermittent cyclic loading. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 889-898.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.05.006     OR     http://www.zjujournals.com/eng/Y2020/V54/I5/889


间歇性循环荷载下原状淤泥质软黏土应变预测模型

针对以往交通荷载下软土塑性应变的研究大多忽视时间间歇影响的问题,考虑不同相对偏应力水平和停振比,设计不排水连续和停振循环三轴试验,对试样采用沿K0线的应力路径固结,研究原状淤泥质软黏土在列车间歇性荷载下的长期应变发展规律. 通过分析连续振动试验结果,发现相对偏应力水平对归一化塑性应变增长率与振次的关系无影响,仅影响等效初次塑性应变. 由于在间歇期土体强度增加,在间歇性循环加载下软土归一化应变增长率显著减小,并且趋于稳定所需的振次随之减少. 基于双曲函数拟合结果,分析停振比对归一化应变增长率的影响规律,发现归一化增长率与振次的关系曲线的形状参数与停振比线性相关. 建立考虑间歇效应的塑性应变长期发展曲线预测模型,该模型由等效初次塑性应变计算模型和归一化增长率计算模型两部分组成,经验证模型预测效果较好,可以用于地铁荷载下软土地基长期应变的计算分析.


关键词: 间歇性循环加载,  塑性应变,  显式模型,  原状淤泥质软黏土,  间歇效应,  应变增长率,  初次应变 
参数 数值 参数 数值
γ/(kN·m?3 17.6 wL/% 37.6
w/% 47.0 Ip 17.6
Gs 2.74 IL 1.55
wp/% 20.0 ? ?
Tab.1 Main physical parameters of marine sedimentary silt soft soil
Fig.1 Two types of normal dynamic load and waveform applied in this paper
Fig.2 Diagram of efficient stress path of soil sample on triaxial test
试样编号 D T/s ΔT/T N
Con-CYC-1 0.428 连续振动 10 000
Con-CYC-2 0.339 连续振动 10 000
Con-CYC-3 0.288 连续振动 10 000
Con-CYC-4 0.215 连续振动 10 000
Int-CYC-1 0.401 10 0.5 10 000
Int-CYC-2 0.345 10 1.0 10 000
Int-CYC-3 0.323 10 2.0 10 000
Int-CYC-4 0.304 10 4.0 10 000
Int-CYC-5 0.417 10 5.0 10 000
Int-CYC-6 0.366 10 10.0 10 000
Tab.2 Scheme of cyclic loading tests
Fig.3 Diagram of measurement of plastic strain in dynamic loading stage
Fig.4 Development of plastic strain under continuous vibration in normal coordinate system
Fig.5 Development of plastic strain under continuous vibration in double-logarithm coordinate system
试样编号 a b R2 dε1/(%/次)
Con-CYC-1 0.231 1 287.32 0.99 7.77×10?4
Con-CYC-2 0.762 4 188.03 0.99 2.39×10?4
Con-CYC-3 1.606 8 819.23 0.99 1.13×10?4
Con-CYC-4 4.123 23 421.51 0.99 4.27×10?5
Tab.3 Fitting parameters of plastic strain curve under continuous vibration
Fig.6 Results of plastic strain development fitted by two types of functions
Fig.7 Relationship between equivalent initial plastic strain and relative deviatoric stress level under continuous vibration
试样编号 m/10?4 n R2
Con-CYC-1 1.79 0.999 64 1.00
Con-CYC-2 1.82 0.999 63 1.00
Con-CYC-3 1.82 0.999 64 1.00
Con-CYC-4 1.76 0.999 65 1.00
平均值 1.798 0.999 64 1.00
Tab.4 Fitting parameters of curve of normalized growth rate of plastic strain
Fig.8 Development of normalized growth rate of plastic strain under continuous vibration
Fig.9 Development of plastic strain under intermittent vibration in normal coordinate system
Fig.10 Development of plastic strain under intermittent vibration in double-logarithm coordinate system
试验编号 a b R2 dε1/(%/次)
Int-CYC-1 0.416 2 180.95 0.98 4.58×10?4
Int-CYC-2 0.992 3 990.62 0.99 2.50×10?4
Int-CYC-3 1.862 4 830.13 0.99 2.07×10?4
Int-CYC-4 3.672 5 675.99 0.98 1.76×10?4
Int-CYC-5 0.975 1 295.25 0.99 7.71×10?4
Int-CYC-6 2.237 1 834.56 0.98 5.44×10?4
Tab.5 Fitting parameters with test results under intermittent vibration
Fig.11 Relationship between equivalent initial plastic strain and relative deviatoric stress level
Fig.12 Development of normalized growth rate of plastic strain under intermittent vibration
试验编号 m/10?4 n R2
Int-CYC-1 1.91 0.999 62 1.00
Int-CYC-2 2.48 0.999 50 1.00
Int-CYC-3 3.85 0.999 23 1.00
Int-CYC-4 6.46 0.998 71 1.00
Int-CYC-5 7.52 0.998 50 1.00
Int-CYC-6 1.22 0.997 57 1.00
Tab.6 Fitting parameters of curve of normalized growth rate of plastic strain under intermittent vibration
Fig.13 Relationship between stop-vibration ratio and fitting parameter
Fig.14 Comparison of measured results and predicted results by proposed model
[1]   陈基炜, 詹龙喜 上海市地铁一号线隧道变形测量及规律分析[J]. 上海地质, 2000, (2): 51- 56
CHEN Ji-wei, ZHAN Long-xi Deformation measuring of the metro tunnel and deformation data analysis of shanghai metro line No. 1[J]. Shanghai Geology, 2000, (2): 51- 56
[2]   陈德智 广州地铁隧道运营期沉降监测及分析[J]. 都市快轨交通, 2011, 24 (4): 94- 98
CHEN De-zhi Subsidence monitoring and analysis for Guangzhou subway tunnels[J]. Urban Rapid Rail Transit, 2011, 24 (4): 94- 98
doi: 10.3969/j.issn.1672-6073.2011.04.024
[3]   唐益群, 王艳玲, 黄雨, 等 地铁行车荷载下土体动强度和动应力-应变关系[J]. 同济大学学报: 自然科学版, 2004, 32 (6): 701- 704
TANG Yi-qun, WANG Yan-li, HUANG Yu, et al Dynamic strength and dynamic stress-strain relation of silt soil under traffic loading[J]. Journal of Tongji University, 2004, 32 (6): 701- 704
[4]   王军, 蔡袁强, 徐长节, 等 循环荷载作用下饱和软黏土应变软化模型研究[J]. 岩石力学与工程学报, 2007, 26 (8): 1713- 1719
WANG Jun, CAI Yuan-qiang, XU Chang-jie, et al Study on strain softening model of saturated soft clay under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (8): 1713- 1719
doi: 10.3321/j.issn:1000-6915.2007.08.024
[5]   聂庆科, 白冰, 胡建敏, 等 循环荷载作用下软土的孔压模式和强度特征[J]. 岩土力学, 2007, (增1): 724- 729
NIE Qing-ke, BAI Bing, HU Jian-min, et al The pore pressure model and undrained shear strength of soft clay under cyclic loading[J]. Rock and Soil Mechanics, 2007, (增1): 724- 729
[6]   瞿帅, 刘维正, 聂志红 长期循环荷载下人工结构性软土累积变形规律及预测模型[J]. 工程地质学报, 2017, 25 (4): 975- 984
QU Shuai, LIU Wei-zheng, NIE Zhi-hong Change law and prediction model for accumulative deformation of artificial structured soft soil under long-term cyclic loading[J]. Journal of Engineering Geology, 2017, 25 (4): 975- 984
[7]   孙阳光, 高玉峰, 刘建民, 等 循环荷载作用下珠海隧道饱和黏土软化试验研究[J]. 长江科学院院报, 2014, 31 (5): 52- 55
SUN Yang-guang, GAO Yu-feng, LIU Jian-min, et al Experimental study on the softening of saturated clay of Zhuhai tunnel under cyclic loading[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31 (5): 52- 55
doi: 10.3969/j.issn.1001-5485.2014.05.011
[8]   王常晶, 温日琨, 陈云敏 交通荷载引起的主应力轴旋转室内试验模拟探讨[J]. 岩土力学, 2008, 29 (12): 3412- 3416
WANG Chang-jing, WEN Ri-kun, CHEN Yun-min Discussion on laboratory test simulation of principal stress axes rotation induced by traffic loading[J]. Rock and Soil Mechanics, 2008, 29 (12): 3412- 3416
doi: 10.3969/j.issn.1000-7598.2008.12.043
[9]   年廷凯, 焦厚滨, 范宁, 等 南海北部陆坡软黏土动力应变-孔压特性试验[J]. 岩土力学, 2018, 39 (5): 1564- 1572
NIAN Ting-kai, JIAO Hou-bin, FAN Ning, et al Experiment on dynamic strain-pore pressure of soft clay in the northern slope of South China Sea[J]. Rock and Soil Mechanics, 2018, 39 (5): 1564- 1572
[10]   黄珏皓, 陈健, 孔令智, 等 考虑循环围压与振动频率影响的饱和软黏土动力特性试验研究[J]. 岩土力学, 2019, 40 (1): 173- 182
HUANG Jue-hao, CHEN Jian, KONG Ling-zhi, et al Experimental study of dynamic behaviors of saturated soft clay considering coupling effects of cyclic confining pressure and vibration frequency[J]. Rock and Soil Mechanics, 2019, 40 (1): 173- 182
[11]   PARR G B. Some aspects of the behaviour of London clay under repeated loading [D]. Nottingham: University of Nottingham, 1972.
[12]   黄茂松, 李进军, 李兴照 饱和软黏土的不排水循环累积变形特性[J]. 岩土工程学报, 2006, 28 (7): 891- 895
HUANG Mao-song, LI Jin-jun, LI Xing-zhao Cumulative deformation behaviour of soft clay in cyclic undrained tests[J]. Chinese Journal of Geotechnical Engineering, 2006, 28 (7): 891- 895
doi: 10.3321/j.issn:1000-4548.2006.07.016
[13]   黄茂松, 姚兆明 循环荷载下饱和软黏土的累积变形显式模型[J]. 岩土工程学报, 2011, 33 (3): 325- 331
HUANG Mao-song, YAO Zhao-ming Explicit model for cumulative strain of saturated clay subjected to cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2011, 33 (3): 325- 331
[14]   王军, 蔡袁强, 郭林, 等 分阶段循环加载条件下温州饱和软黏土孔压和应变发展规律[J]. 岩土工程学报, 2012, 34 (7): 1349- 1354
WANG Jun, CAI Yuan-qiang, GUO Lin, et al Pore pressure and strain development of Wenzhou saturated soft soil under cyclic loading by stages[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (7): 1349- 1354
[15]   丁建宇, 王朝亮, 杜运国, 等 排水条件下阶段性循环荷载作用对饱和软黏土动力特性影响[J]. 世界地震工程, 2017, 33 (2): 161- 168
DING Jian-yu, WANG Chao-liang, DU Yun-guo, et al Influence of staged cyclic loading on dynamic behavior of saturated soft clay under drained condition[J]. World Earthquake Engineering, 2017, 33 (2): 161- 168
[16]   YILDIRIM H, ERSAN H Settlements under consecutive series of cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2007, 27: 577- 585
doi: 10.1016/j.soildyn.2006.10.007
[17]   何绍衡, 郑晴晴, 夏唐代, 等 考虑时间间歇效应的地铁列车荷载下海相软土长期动力特性试验研究[J]. 岩石力学与工程学报, 2019, 38 (2): 353- 364
HE Shao-heng, ZHENG Qing-qing, XIA Tang-dai, et al Experimental on long-term dynamic characteristics of marine soft soil under metro train load considering time intermittent effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (2): 353- 364
[18]   夏唐代, 郑晴晴, 陈秀良 基于累积动应力水平的间歇加载下超孔压预测[J]. 岩土力学, 2019, 40 (4): 1483- 1490
XIA Tang-dai, ZHENG Qing-qing, CHEN Xiu-liang Predicting Excess pore water pressure under cyclic loading with regular intervals based on cumulative dynamic deviator stress level[J]. Rock and Soil Mechanics, 2019, 40 (4): 1483- 1490
[19]   ZHENG Q Q, XIA T D, DING Z, et al The effect of periodic intermittency on the cyclic behavior of marine sedimentary clay[J]. Marine Georesources and Geotechnology, 2019, 37 (8): 945- 959
[20]   中华人民共和国住房和城乡建设部. 建筑工程地质勘探与取样技术规程: JGJ/T87-2012 [S]. 北京: 中国建筑工业出版社, 2012.
[21]   南京水利科学研究院. 土工试验规程: SL 237-1999 [S]. 北京: 中国水利水电出版社, 1999.
[22]   张涛. 地铁列车荷载下不同固结度重塑黏土动力特性试验研究[D]. 杭州: 浙江大学, 2014.
ZHANG Tao. Experimental study on dynamic characteristics of remolded clay with different consolidation degree under subway loading [D]. Hangzhou: Zhejiang University, 2014.
[23]   潘昌实, 谢正光 地铁区间隧道列车振动测试与分析[J]. 土木工程学报, 1990, 23 (2): 21- 28
PAN Chang-shi, XIE Zheng-guang Measurement and analysis of vibrations caused by passing trains in subway running tunnel[J]. China Civil Engineering Journal, 1990, 23 (2): 21- 28
[24]   高广运, 赵宏, 张博, 等 饱和分层地基上列车运行引起的地面振动分析[J]. 同济大学学报: 自然科学版, 2013, 41 (12): 1805- 1811
GAO Guang-yun, ZHAO Hong, ZHANG Bo, et al Analysis of ground vibration induced by trains on saturated layered ground[J]. Journal of Tongji University: Natural Science, 2013, 41 (12): 1805- 1811
[25]   黄博, 丁浩, 陈云敏 高速列车荷载作用的动三轴试验模拟[J]. 岩土工程学报, 2011, 33 (2): 195
HUANG Bo, DING Hao, CHEN Yun-min Simulation of high-speed train load by dynamic triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2011, 33 (2): 195
[26]   郭林. 复杂应力路径下饱和软黏土静动力特性试验研究[D]. 杭州: 浙江大学, 2013.
GUO Lin. Experimental study on the static and cyclic behavior of saturated clay under complex stress path [D]. Hangzhou: Zhejiang University, 2013.
[27]   郭飞. 静动荷载作用下结构性软土刚度软化特性研究[D]. 天津: 天津城建大学, 2014.
GUO Fei. Research on stiffness softening characteristics of structural soft soil under static and cyclic loading [D]. Tianjin: Tianjin Chengjian University, 2014.
[28]   臧濛, 孔令伟, 曹勇 描述循环荷载作用下黏土累积变形的改进模型[J]. 岩土力学, 2017, 38 (2): 435- 442
ZANG Meng, KONG Ling-wei, CAO Yong An improved model for cumulative deformations of clay subjected to cyclic loading[J]. Rock and Soil Mechanics, 2017, 38 (2): 435- 442
[1] Wen-tao YU,Xu XIE,Cheng CHENG. Effects of welding details on ultra-low cycle fatigue performance of T-welded joint[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 31-37.
[2] CAI Yuan-qiang,LIU Xin-feng,GUO Lin,SUN Hong-lei,CAO Zhi-gang. Long-term settlement of surcharge preloading foundation in soft clay area induced by aircraft loads[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1157-1163.