Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (7): 1436-1446    DOI: 10.3785/j.issn.1008-973X.2022.07.019
    
Characteristic of air gap balanced hybrid excitation linear synchronous motor
Xiao-zhuo XU1(),Han DU1,Yang-yang ZHANG1,Hai-chao FENG1,Bao-yu DU2,*(),Shu-hua WANG3
1. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, China
2. School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China
3. School of Electrical Engineering , Shanghai Dianji University, Shanghai 200240, China
Download: HTML     PDF(3224KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel hybrid excitation linear motor was designed aiming at the problems of vibration, noise and wear between wheel and rail caused by uneven air gap in linear motor ropeless lifting system. The magnetic field and normal force were adjusted by changing the secondary current. Then the bilateral air gap was evenly adjusted to reduce the pressure between wheel and rail. The topology of new motor and the principle of air gap magnetic field adjustment were introduced. Then the influence of structural parameters on motor performance was analyzed, and the parameters of the prototype were determined. The regulation performance of secondary excitation current on normal force was analyzed under different load conditions. Then the effects of secondary DC excitation current on no-load back EMF and thrust were analyzed. Results show that the DC excitation has a significant effect on the normal force and has little effect on the thrust of the motor. The normal force changes linearly with DC excitation current under the same load condition. The regulation ability of DC excitation current to normal force decreases slightly when the load increases. The experimental results basically accorded with the finite element analysis, which verified the correctness of the theoretical analysis in this paper.



Key wordspermanent magnet linear synchronous motor      magnetic field adjustment      hybrid excitation      normal force     
Received: 18 July 2021      Published: 26 July 2022
CLC:  TM 359  
Fund:  国家自然科学基金资助项目(52177039);河南省科技攻关项目(222102220016,212102210145,222102210274)
Corresponding Authors: Bao-yu DU     E-mail: xxz@hpu.edu.cn;dbyhpu@163.com
Cite this article:

Xiao-zhuo XU,Han DU,Yang-yang ZHANG,Hai-chao FENG,Bao-yu DU,Shu-hua WANG. Characteristic of air gap balanced hybrid excitation linear synchronous motor. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1436-1446.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.07.019     OR     https://www.zjujournals.com/eng/Y2022/V56/I7/1436


气隙调衡式混合励磁直线同步电机特性

针对直线电机无绳提升系统中因气隙不均匀引起的轮轨间振动、噪声和磨损等问题,设计新型的混合励磁直线电机. 通过改变次级励磁电流来调节双边气隙磁场和法向电磁力,进而调节双边气隙平衡,有效地降低轮轨间压力. 介绍新型电机的拓扑结构及气隙磁场调节原理,分析主要结构参数对电机性能的影响,确定样机的基本参数. 研究不同负载工况下次级励磁电流对法向电磁力的调节特性,分析次级励磁电流对直线电机空载反电势和电磁推力的影响. 研究结果表明,次级直流励磁电流对电机法向电磁力具有良好的调节能力,对电机推力输出基本没有影响. 在相同的负载工况下,法向电磁力随次级直流励磁电流基本呈线性变化. 当电机负载增大时,直流励磁电流对法向电磁力的调节能力略有降低. 实验结果与有限元分析结果基本吻合,验证了本文理论分析的正确性.


关键词: 永磁同步直线同步电机,  磁场调节,  混合励磁,  法向力 
Fig.1 Structure diagram of new hybrid excited double-sided linear motor
Fig.2 Sectional view of HES-LSM
Fig.3 Flux paths under different magnet-motive force
Fig.4 Force diagram of mover under DC excitation
参数 数值
初级槽宽wps/mm 16
初级槽高hps/mm 20
初级长度lp/mm 360
初级高度hp/mm 50
次级高度hs/mm 62
永磁宽度wpm/mm 8.5
次级凸铁宽wst/mm 14
直流绕组槽高hdc/mm 34
直流绕组槽宽wdc/mm 3.5
初级铁心叠厚d/mm 70
气隙长度g/mm 4
极距τ/mm 22.5
Tab.1 Structure parameters of HES-LSM
Fig.5 Basic size of HES-LSM
Fig.6 Back EMF of phase A (v = 1.035 m/s)
Fig.7 Harmonic analysis of back EMF
Fig.8 Detent force wave forms at different magnetization length of PM
Fig.9 Influence of DC excitation winding slot width and height on thrust
Wdc/mm FT/N Fr/% hdc/mm FT/N Fr/%
2.5 1365.18 2.56 20 1369.35 2.14
3.0 1363.41 2.75 18 1362.34 1.65
3.5 1360.16 1.79 17 1360.16 1.79
4.0 1358.80 1.41 16 1359.52 2.33
4.5 1362.18 2.00 14 1366.59 2.10
Tab.2 Influence of DC excitation winding slot width and height on thrust
Fig.10 Comparison of ρ and η before and after slotting
λ/(°) Δρ/% Δη/% λ/(°) Δρ/% Δη/%
0 0.86 4.98 60 2.11 0.69
10 0.16 6.44 70 1.78 0.19
20 1.76 3.93 80 1.32 0.15
30 2.29 2.56 90 1.60 0.23
40 2.41 1.74 100 1.82 0.21
50 2.32 1.12
Tab.3 Deviation ofρ and η under different power angles
Fig.11 Finite element model of HES-LSM
Fig.12 Variation of By under different air-gap shift
Fig.13 Variation of back EMF amplitude of phase A with air gap offset
Fig.14 Magnetic field distribution under different DC excitation current
Fig.15 Influence of DC excitation current on normal air-gap flux density (4 mm vs.4 mm)
Fig.16 Influence of air gap offset on normal force (Idc = 0)
Fig.17 Relationship between normal resultant force and DC excitation current under different air gap offset
Fig.18 Variation of back EMF under different Idc (v = 0.54 m/s)
Fig.19 Variation of normal resultant force with DC excitation current under different load angles
Fig.20 Variation of thrust and normal resultant force with different load angles under different DC excitation
Fig.21 Primary and secondary structure
Fig.22 Primary and secondary assembly diagram
Fig.23 Test platform of HES-LSM prototype
Fig.24 Comparison between test and simulation results of detent force (Wpm = 8.5 mm)
Fig.25 Comparison between test and simulation results of back EMF(v = 0.54 m/s)
Fig.26 Back EMF of phaseA under different DC excitation current
Fig.27 Effect of DC excitation current on primary current
Fig.28 Influence of air gap offset and DC excitation current on normal force
Fig.29 Influence of DC excitation current on thrust and normal force
[1]   沈燚明, 卢琴芬 初级励磁型永磁直线电机研究现状与展望[J]. 电工技术学报, 2021, 36 (11): 2325- 2343
SHEN Yi-ming, LU Qin-fen Overview of permanent magnet linear machines with primary excitation[J]. Transactions of China Electrotechnical Society, 2021, 36 (11): 2325- 2343
[2]   卢琴芬, 沈燚明, 叶云岳 永磁直线电动机结构及研究发展综述[J]. 中国电机工程学报, 2019, 39 (9): 2575- 2588
LU Qin-fen, SHEN Yi-ming, YE Yun-yue Development of permanent magnet linear synchronous motors structure and research[J]. Proceedings of the CSEE, 2019, 39 (9): 2575- 2588
[3]   卢琴芬, 张新敏, 黄立人 错位式双边型永磁直线同步电机优化设计[J]. 电工技术学报, 2013, 28 (11): 35- 41
LU Qin-fen, ZHANG Xin-min, HUANG Li-ren Optimal design of shifted type double-sided permanent magnet linear synchronous motors[J]. Transactions of China Electrotechnical Society, 2013, 28 (11): 35- 41
doi: 10.3969/j.issn.1000-6753.2013.11.005
[4]   夏加宽, 赵鹏, 黄伟 直线伺服电机法向力分析[J]. 电气 开关, 2010, 48 (4): 15- 17
XIA Jia-kuan, ZHAO Peng, HUANG Wei Study on the normal force of a linear servo motor[J]. Electric Switchgear, 2010, 48 (4): 15- 17
[5]   APPUM R, SCHMULLING B, HAMEYER K Electromagnetic guiding of vertical transportation vehicles: experimental evaluation[J]. IEEE Transactions on Industrial Electronics, 2010, 57 (1): 335- 343
doi: 10.1109/TIE.2009.2032432
[6]   寇宝泉, 赵晓坤, 张浩泉 永磁同步电机电磁结构及磁场调节技术的综述分析[J]. 中国电机工程学报, 2021, 41 (20): 7126- 7141
KOU Bao-quan, ZHAO Xiao-kun, ZHANG Hao-quan Review and analysis of electromagnetic structure and magnetic field regulation technology of the permanent magnet synchronous motors[J]. Proceedings of the CSEE, 2021, 41 (20): 7126- 7141
[7]   SPOONER E, KHATAB S A W, NICOLAOU N G. Hybrid excitation of AC and DC machines [C]// 4th International Conference on Electrical Machines and Drives. London: IEEE, 1989: 48-52.
[8]   FODOREAN D, DJERDIR A D, VIOREL I A, et al A double excited synchronous machine for direct drive application: design and prototype tests[J]. IEEE Transactions on Energy Conversion, 1994, 22 (3): 656- 665
[9]   NAOE N, FUKAMI T. Trial production of a hybrid excitation type synchronous machine [C]// IEEE International Electric Machines and Drives Conference, Cambridge: IEEE, 2001: 545-547.
[10]   OSTOVIC V. Memory motors-a new class of controllable flux PM machines for a true wide speed operation [C]// 36th IAS Annual Meeting. Chicago: IEEE, 2001: 2577-2584.
[11]   OSTOVIC V Memory motors[J]. Industry Applications Magazine, 2003, 9 (1): 52- 61
doi: 10.1109/MIA.2003.1176459
[12]   林鹤云, 阳辉, 黄允凯 记忆电机的研究综述及最新进展[J]. 中国电机工程学报, 2013, 33 (33): 57- 67
LIN He-yun, YANG Hui, HUANG Yun-kai Overview and recent developments of memory machines[J]. Proceedings of the CSEE, 2013, 33 (33): 57- 67
[13]   寇宝泉, 张浩泉, 宋得雪, 等. 多相永磁同步电机系统及其磁场调节方法: CN111953163A [P]. 2020-11-17.
KOU Bao-quan, ZHANG Hao-quan, SONG De-xue, et al. Multi-phase permanent magnet synchronous motor system and its magnetic field adjustment method: CN111953163A[P]. 2020-11-17.
[14]   程树康, 李春艳, 寇宝泉. 具有变磁阻励磁回路的永磁 同步电机可变励磁功能的研究[J]. 中国电机工程学报, 2007, 27(33): 17-21.
CHENG Shu-kang, LI Chun-yan, KOU Bao-quan. Research on the variable exciting function of a variable exciting magnetic reluctance PMSM [J]. Proceedings of the CSEE, 2007, 27(33): 17-21.
[15]   ZEPP L P, MEDLIN J W. Brushless permanent magnet motor or alternator with variable axial rotor/stator alignment to increase speed capability: EP1483821 [P]. 2009-05-27.
[16]   卢琴芬, 叶云岳 混合励磁直线同步电机的磁场与推力[J]. 中国电机工程学报, 2005, 25 (10): 127- 130
LU Qin-fen, YE Yun-yue Magnetic field and thrust of hybrid excitation linear synchronous motor[J]. Proceedings of the CSEE, 2005, 25 (10): 127- 130
doi: 10.3321/j.issn:0258-8013.2005.10.024
[17]   曾志强, 卢琴芬, 叶云岳 一种新型九相模块化混合励磁开关磁链直线电机[J]. 中国电机工程学报, 2017, 37 (21): 6158- 6167
ZENG Zhi-qiang, LU Qin-fen, YE Yun-yue A novel nine-phase modular hybrid-excited flux-switching linear machine[J]. Proceedings of the CSEE, 2017, 37 (21): 6158- 6167
[18]   LIU C T, HWANG C C, LI P L, et al Design optimization of a double-sided hybrid excited linear flux switching PM motor with low force ripple[J]. IEEE Transactions on Magnetics, 2014, 50 (11): 1- 4
[19]   张卓然, 王东, 花为 混合励磁电机结构原理、设计与运行控制技术综述及展望[J]. 中国电机工程学报, 2020, 40 (24): 7834- 7850
ZHANG Zhuo-ran, WANG Dong, HUA wei Overview of configuration, design and control technology of hybrid excitation machines[J]. Proceedings of the CSEE, 2020, 40 (24): 7834- 7850
[20]   樊英, 雷宇通, 张秋实 新型交替极混合励磁电机宽速域电流高效协调控制[J]. 中国电机工程学报, 2020, 40 (24): 7918- 7927
FAN Ying, LEI Yu-tong, ZHANG Qiu-shi Wide speed area and efficient current coordinated control of new consequent-pole hybrid excitation motor[J]. Proceedings of the CSEE, 2020, 40 (24): 7918- 7927
[21]   林鹤云, 黄明明, 陆婋泉, 等 混合励磁同步电机铜耗最小化弱磁调速控制研究[J]. 中国电机工程学报, 2014, 34 (6): 889- 896
LIN He-yun, HUANG Ming-ming, LU Xiao-quan Copper loss minimization flux weakening control for hybrid excitation synchronous motor[J]. Proceedings of the CSEE, 2014, 34 (6): 889- 896
[22]   吴中泽, 诸自强. 一种新型定子分区式混合励磁电机的设计与分析[J]. 中国电机工程学报, 2017, 37(22): 6543-6556.
WU Zhong-ze, ZHU Zi-qiang. Design and analysis of a novel partitioned stator hybrid excitation machine [J]. Proceedings of the CSEE, 2017, 37(22): 6543-6556.
[23]   华浩, 诸自强, 花为, 等 不同极槽数配合的分立定子混合励磁磁通切换电机研究[J]. 中国电机工程学报, 2021, 41 (16): 5715- 5727
HUA Hao, ZHU Zi-qiang, HUA Wei, et al Investigation of partitioned stator hybrid excited switched flux machines with different rotor piece numbers[J]. Proceedings of the CSEE, 2021, 41 (16): 5715- 5727
[24]   李毅搏. 新型永磁调速器解析建模与电磁特性分析研究[D]. 南京: 东南大学, 2019.
LI Yi-bo. The research about analytical modeling and electromagnetic characteristic analysis of novel permanent magnet adjustable speed drives [D]. Nanjing: Southeast University, 2019.
[1] NING Yin hang, LIU Chuang, GAN Xing ye. Electromagnetic design and analysis of two stage hybrid excitation synchronous generator[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 519-526.
[2] WU Ke-yuan, LIU Xiao, YE Yun-yue. Key parameters of flat hybrid linear stepping motor[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(9): 1603-1608.
[3] HUANG Meng-Xing, XIE Yun-Yue, LIU Zhuang. Design and optimization of dual excitation linear synchronous motors with internally placed permanent magnets[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(3): 544-549.