| 交通工程、土木工程 |
|
|
|
|
| 基于脑电多尺度特征和图神经网络的紧急制动行为识别 |
闫光辉( ),黄霄,常文文 |
| 兰州交通大学 电子与信息工程学院,甘肃 兰州 730070 |
|
| Emergency braking behavior recognition based on EEG multi-scale features and graph neural networks |
Guanghui YAN( ),Xiao HUANG,Wenwen CHANG |
| School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China |
| 1 |
World Health Organization. Road traffic injuries [EB/OL]. (2023–12–13)[2024–11–18]. https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries.
|
| 2 |
HAGHANI M, BLIEMER M C J, FAROOQ B, et al Applications of brain imaging methods in driving behaviour research[J]. Accident Analysis and Prevention, 2021, 154: 106093
doi: 10.1016/j.aap.2021.106093
|
| 3 |
程文鑫, 闫光辉, 常文文, 等 基于通道加权的多模态特征融合用于EEG疲劳驾驶检测[J]. 浙江大学学报: 工学版, 2025, 59 (9): 1775- 1783 CHENG Wenxin, YAN Guanghui, CHANG Wenwen, et al Channel-weighted multimodal feature fusion for EEG-based fatigue driving detection[J]. Journal of Zhejiang University: Engineering Science, 2025, 59 (9): 1775- 1783
|
| 4 |
JU J, LI H A survey of EEG-based driver state and behavior detection for intelligent vehicles[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2024, 6 (3): 420- 434
doi: 10.1109/TBIOM.2024.3400866
|
| 5 |
HAUFE S, TREDER M S, GUGLER M F, et al EEG potentials predict upcoming emergency brakings during simulated driving[J]. Journal of Neural Engineering, 2011, 8 (5): 056001
doi: 10.1088/1741-2560/8/5/056001
|
| 6 |
HAUFE S, KIM J W, KIM I H, et al Electrophysiology-based detection of emergency braking intention in real-world driving[J]. Journal of Neural Engineering, 2014, 11 (5): 056011
doi: 10.1088/1741-2560/11/5/056011
|
| 7 |
KIM I H, KIM J W, HAUFE S, et al Detection of braking intention in diverse situations during simulated driving based on EEG feature combination[J]. Journal of Neural Engineering, 2015, 12 (1): 016001
doi: 10.1088/1741-2560/12/1/016001
|
| 8 |
LEE S M, KIM J W, LEE S W. Detecting driver’s braking intention using recurrent convolutional neural networks based EEG analysis [C]// Proceedings of the 4th IAPR Asian Conference on Pattern Recognition. Nanjing: IEEE, 2018: 840–845.
|
| 9 |
HERNÁNDEZ L G, MOZOS O M, FERRÁNDEZ J M, et al EEG-based detection of braking intention under different car driving conditions[J]. Frontiers in Neuroinformatics, 2018, 12: 29
doi: 10.3389/fninf.2018.00029
|
| 10 |
TENG T, BI L, LIU Y EEG-based detection of driver emergency braking intention for brain-controlled vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19 (6): 1766- 1773
doi: 10.1109/TITS.2017.2740427
|
| 11 |
WANG H, BI L, FEI W, et al. An EEG-based multi-classification method of braking intentions for driver-vehicle interaction [C]// Proceedings of the IEEE International Conference on Real-time Computing and Robotics. Irkutsk: IEEE, 2020: 438–441.
|
| 12 |
NGUYEN T H, CHUNG W Y Detection of driver braking intention using EEG signals during simulated driving[J]. Sensors, 2019, 19 (13): 2863
doi: 10.3390/s19132863
|
| 13 |
ZHANG X, YAN X, STYLLI J, et al Exploring the effects of EEG signals on collision cases happening in the process of young drivers’ braking[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 80: 381- 398
doi: 10.1016/j.trf.2021.05.010
|
| 14 |
NACPIL E J C, WANG Z, GUAN M, et al EEG-based emergency braking prediction using data ablation and SVM classification[J]. IEEE Sensors Journal, 2023, 23 (14): 16013- 16019
doi: 10.1109/JSEN.2023.3283447
|
| 15 |
LIANG X, YU Y, LIU Y, et al EEG-based emergency braking intention detection during simulated driving[J]. BioMedical Engineering OnLine, 2023, 22 (1): 65
doi: 10.1186/s12938-023-01129-4
|
| 16 |
FAHIMI F, ZHANG Z, GOH W B, et al Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI[J]. Journal of Neural Engineering, 2019, 16 (2): 026007
doi: 10.1088/1741-2552/aaf3f6
|
| 17 |
DING Y, ROBINSON N, TONG C, et al LGGNet: learning from local-global-graph representations for brain–computer interface[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (7): 9773- 9786
doi: 10.1109/TNNLS.2023.3236635
|
| 18 |
WANG H, BI L, TENG T Neural correlates and detection of braking intention under critical situations based on the power spectra of electroencephalography signals[J]. Science China Information Sciences, 2019, 63 (1): 119202
|
| 19 |
LACHAUX J P, RODRIGUEZ E, MARTINERIE J, et al Measuring phase synchrony in brain signals[J]. Human Brain Mapping, 1999, 8 (4): 194- 208
doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
|
| 20 |
STAM C J, NOLTE G, DAFFERTSHOFER A Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources[J]. Human Brain Mapping, 2007, 28 (11): 1178- 1193
doi: 10.1002/hbm.20346
|
| 21 |
PEARSON K Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs[J]. Proceedings of the Royal Society of London, 1897, 60: 489- 498
|
| 22 |
LV R, CHANG W, YAN G, et al A novel recognition and classification approach for motor imagery based on spatio-temporal features[J]. IEEE Journal of Biomedical and Health Informatics, 2025, 29 (1): 210- 223
doi: 10.1109/JBHI.2024.3464550
|
| 23 |
袁月婷, 闫光辉, 常文文, 等 基于脑电信号空域特征的紧急制动行为识别[J]. 电子科技大学学报, 2024, 53 (1): 84- 91 YUAN Yueting, YAN Guanghui, CHANG Wenwen, et al Emergency braking behavior recognition based on spatial features of EEG[J]. Journal of University of Electronic Science and Technology of China, 2024, 53 (1): 84- 91
|
| 24 |
SCHIRRMEISTER R T, SPRINGENBERG J T, FIEDERER L D J, et al Deep learning with convolutional neural networks for EEG decoding and visualization[J]. Human Brain Mapping, 2017, 38 (11): 5391- 5420
doi: 10.1002/hbm.23730
|
| 25 |
SHUMAN D I, NARANG S K, FROSSARD P, et al The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30 (3): 83- 98
doi: 10.1109/MSP.2012.2235192
|
| 26 |
常文文, 闫光辉, 杨志飞, 等 基于脑电熵值特征和功能连接的不同线型道路下驾驶状态检测[J]. 电子学报, 2023, 51 (10): 2874- 2883 CHANG Wenwen, YAN Guanghui, YANG Zhifei, et al Detection of driving state under different curve road based on entropy and functional connectivity of EEG[J]. Acta Electronica Sinica, 2023, 51 (10): 2874- 2883
|
| 27 |
LAWHERN V J, SOLON A J, WAYTOWICH N R, et al EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces[J]. Journal of Neural Engineering, 2018, 15 (5): 056013
doi: 10.1088/1741-2552/aace8c
|
| 28 |
HOU Y, JIA S, LUN X, et al GCNs-net: a graph convolutional neural network approach for decoding time-resolved EEG motor imagery signals[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (6): 7312- 7323
doi: 10.1109/TNNLS.2022.3202569
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|