| 计算机技术 |
|
|
|
|
| 基于改进YOLOv8的船舶目标检测算法 |
朵琳( ),殷瑜,段威,张芸,任勇 |
| 昆明理工大学 信息工程与自动化学院,云南 昆明 650500 |
|
| Ship target detection algorithm based on improved YOLOv8 |
Lin DUO( ),Yu YIN,Wei DUAN,Yun ZHANG,Yong REN |
| School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China |
引用本文:
朵琳,殷瑜,段威,张芸,任勇. 基于改进YOLOv8的船舶目标检测算法[J]. 浙江大学学报(工学版), 2025, 59(11): 2379-2388.
Lin DUO,Yu YIN,Wei DUAN,Yun ZHANG,Yong REN. Ship target detection algorithm based on improved YOLOv8. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2379-2388.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.11.017
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I11/2379
|
| 1 |
YANG Z, LAI Y, ZHOU H, et al Improving ship detection based on decision tree classification for high frequency surface wave radar[J]. Journal of Marine Science and Engineering, 2023, 11 (3): 493- 499
doi: 10.3390/jmse11030493
|
| 2 |
ZHANG X, FENG S. ZHAO C, et al . MGSFA-Net: multiscale global scattering feature association network for SAR ship target recognition [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17(1): 4611–4625.
|
| 3 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587.
|
| 4 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
|
| 5 |
LI N, YE X D, WANG H, et al SAR image ship detection in complex scenarios using modified YOLOv5[J]. Journal of Signal Processing, 2022, 38 (5): 1009- 1018
|
| 6 |
TANG H, GAO S, LI S, et al A lightweight SAR Image ship detection method based on improved convolution and YOLOv7[J]. Remote Sensing, 2024, 16 (3): 486
doi: 10.3390/rs16030486
|
| 7 |
ZHANG L, FANG N, YANG X, et al MSFA-YOLO: a multi-scale SAR ship detection algorithm based on fused attention[J]. IEEE Access, 2024, 12 (1): 24554- 24568
|
| 8 |
ZHAO S, TAO R, JIA F DML-YOLOv8-SAR image object detection algorithm[J]. Signal, Image and Video Processing, 2024, 18 (10): 6911- 6923
doi: 10.1007/s11760-024-03361-4
|
| 9 |
WEI H, LIU X, XU S, et al. DWRSeg: rethinking efficient acquisition of multi-scale contextual information for real-time semantic segmentation [EB/OL]. [2024-10-15]. https://arxiv.org/abs/2212.01173.
|
| 10 |
XU W, LONG C, WANG R, et al. DRB-GAN: a dynamic Resblock generative adversarial network for artistic style transfer [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 6383-6392.
|
| 11 |
XIA Z, PAN X, SONG S, et al. Vision Transformer with deformable attention [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 4794-4803.
|
| 12 |
LIU W, LU H, FU H, et al. Learning to upsample by learning to sample [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 6027-6037.
|
| 13 |
ZHANG T, ZHANG X, LI J, et al SAR ship detection dataset (SSDD): official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13 (18): 3690- 3710
doi: 10.3390/rs13183690
|
| 14 |
WEI S, ZENG X, QU Q, et al HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8 (1): 120234- 120254
|
| 15 |
FU J, SUN X, WANG Z, et al An anchor-free method based on feature balancing and refinement network for multiscale ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59 (2): 1331- 1344
doi: 10.1109/TGRS.2020.3005151
|
| 16 |
YU L, WU H, ZHONG Z, et al TWC-Net: a SAR ship detection using two-way convolution and multiscale feature mapping[J]. Remote Sensing, 2021, 13 (13): 2558
doi: 10.3390/rs13132558
|
| 17 |
JIAO J, ZHANG Y, SUN H, et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection [J]. IEEE Access, 2018, 6: 20881-20892.
|
| 18 |
FENG C, ZHONG Y, GAO Y, et al. Tood: task-aligned one-stage object detection [C]//IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 3490-3499.
|
| 19 |
MA X, HOU S, WANG Y, et al Multiscale and dense ship detection in SAR images based on key-point estimation and attention mechanism[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1- 11
|
| 20 |
YANG Y, MA C, LI G, et al ADERLNet: adaptive denoising enhancement representation learning for low-latency and high-accurate target detection on SAR sensors[J]. IEEE Sensors Journal, 2024, 24 (5): 6430- 6450
|
| 21 |
LIN T, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// IEEE/CVF International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
|
| 22 |
ZHOU X, WANG D, KRÄHENBÜHL P Objects as points[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (12): 4234- 4242
|
| 23 |
CUI Z, LI Q, CAO Z, et al Dense attention pyramid networks for multi-scale ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57 (11): 8983- 8997
doi: 10.1109/TGRS.2019.2923988
|
| 24 |
YANG X, ZHANG X, WANG N, et al A robust one-stage detector for multiscale ship detection with complex background in massive SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1- 12
|
| 25 |
TANG G, ZHAO H, CLARAMUNT C, et al PPA-Net: pyramid pooling attention network for multi-scale ship detection in SAR images[J]. Remote Sensing, 2023, 15 (11): 2855
doi: 10.3390/rs15112855
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|