Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (2): 404-414    DOI: 10.3785/j.issn.1008-973X.2026.02.019
交通工程、土木工程     
基于脑电多尺度特征和图神经网络的紧急制动行为识别
闫光辉(),黄霄,常文文
兰州交通大学 电子与信息工程学院,甘肃 兰州 730070
Emergency braking behavior recognition based on EEG multi-scale features and graph neural networks
Guanghui YAN(),Xiao HUANG,Wenwen CHANG
School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
 全文: PDF(3258 KB)   HTML
摘要:

现有技术主要依赖传统的时频域特征,对脑活动空间域特征的研究不足. 为了实现对紧急制动意图和正常驾驶的分类识别,提出融合多尺度卷积、脑功能网络和图卷积神经网络的新模型. 利用多尺度卷积提取时频域融合的多尺度特征;基于脑功能连接测量矩阵构建脑功能网络,得到空间图结构信息;采用图卷积神经网络融合多尺度特征和空间图结构信息,实现对紧急制动脑电信号的分类识别. 实验结果表明,所提模型在公开数据集上多被试的准确率均超过93.00%,最高达到95.60%;在单被试条件下,准确率均超过92.00%,最高达到98.94%. 消融实验验证了所提模型各模块均对模型性能的提升具有显著贡献. 在相同数据集下,所提模型比已有的6种脑电信号分类算法更具优势.

关键词: 紧急制动脑电信号(EEG)多尺度特征脑功能网络图卷积神经网络    
Abstract:

Existing techniques primarily rely on traditional time-frequency domain features and neglect the spatial domain features of brain activity. To classify emergency braking intentions and normal driving, a new model integrating multi-scale convolution, brain functional networks, and graph convolutional neural networks was proposed. First, multi-scale convolution was used to extract multi-scale features fused from the time-frequency domain. Then, a brain functional network was constructed based on the brain functional connectivity measurement matrix to obtain spatial graph structure information. Finally, graph convolutional neural networks were employed to integrate multi-scale features and spatial graph structure information for the classification of emergency braking EEG signals. Experimental results showed that the proposed model achieved an accuracy of over 93.00% across multiple subjects in a public dataset, with a maximum of 95.60%. In the single-subject condition, the accuracy exceeded 92.00%, reaching as high as 98.94%. Ablation experiments confirmed that each module significantly contributed to the improvement of the model’s performance. Compared to six existing EEG signal classification algorithms on the same dataset, the proposed model showed superior performance.

Key words: emergency braking    electroencephalography (EEG)    multi-scale features    brain functional network    graph convolutional neural network
收稿日期: 2025-01-18 出版日期: 2026-02-03
CLC:  TP 391  
基金资助: 国家自然科学基金资助项目(62366028,62466032,2421090);中国国家铁路集团有限公司科技研究开发计划重点课题(2024G036);甘肃省科技重大专项(23ZDFA012);甘肃省科技计划项目(24JRRA256);甘肃省教育厅青年博士项目(2023QB-038).
作者简介: 闫光辉(1970—),男,教授,从事大数据智能挖掘、复杂网络分析及脑电信号处理等研究. orcid.org/0000-0002-1979-4862. E-mail:ghyan@mail.lzjtu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
闫光辉
黄霄
常文文

引用本文:

闫光辉,黄霄,常文文. 基于脑电多尺度特征和图神经网络的紧急制动行为识别[J]. 浙江大学学报(工学版), 2026, 60(2): 404-414.

Guanghui YAN,Xiao HUANG,Wenwen CHANG. Emergency braking behavior recognition based on EEG multi-scale features and graph neural networks. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 404-414.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.02.019        https://www.zjujournals.com/eng/CN/Y2026/V60/I2/404

图 1  实验范式图
图 2  脑电通道位置示意图
图 3  融合多尺度卷积、脑功能网络和图卷积神经网络的紧急制动识别模型框架图
图 4  脑功能连接测量矩阵的权值频率直方图
图 5  特征融合过程
图 6  不同脑功能连接测量矩阵下2种驾驶状态的脑功能网络图
特征参数额叶颞叶中央区顶叶枕叶
BC******
CC**
ASS*****
TRA*******
Ge******
表 1  阈值相位锁值矩阵中网络特征参数的差异性
图 7  不同时间窗大小下的模型性能参数
图 8  不同尺度数量卷积核下的模型性能参数
图 9  不同脑功能连接测量矩阵下模型性能的多被试十折交叉验证结果
图 10  不同脑功能连接测量矩阵下模型性能的单被试结果
图 11  不同准确率下单被试混淆矩阵
模型AccPRF1AUC
无 GCN93.0293.0993.0193.0193.01
无 MSC92.9692.9792.9592.9692.95
本研究93.3893.4493.3693.3793.36
表 2  模块消融实验结果
算法Acc/%P/%R/%F1/%AUC/%tt/min
EEGNet91.4691.5391.4591.4591.4540.26
DeepConvNet90.8391.1390.8190.8290.81466.09
BiRNN86.6786.6786.6786.6789.29129.60
DGCNN91.0891.0991.0892.0891.0810.42
本研究93.3893.4493.3693.3793.3648.72
表 3  不同模型的分类性能参数对比
1 World Health Organization. Road traffic injuries [EB/OL]. (2023–12–13)[2024–11–18]. https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries.
2 HAGHANI M, BLIEMER M C J, FAROOQ B, et al Applications of brain imaging methods in driving behaviour research[J]. Accident Analysis and Prevention, 2021, 154: 106093
doi: 10.1016/j.aap.2021.106093
3 程文鑫, 闫光辉, 常文文, 等 基于通道加权的多模态特征融合用于EEG疲劳驾驶检测[J]. 浙江大学学报: 工学版, 2025, 59 (9): 1775- 1783
CHENG Wenxin, YAN Guanghui, CHANG Wenwen, et al Channel-weighted multimodal feature fusion for EEG-based fatigue driving detection[J]. Journal of Zhejiang University: Engineering Science, 2025, 59 (9): 1775- 1783
4 JU J, LI H A survey of EEG-based driver state and behavior detection for intelligent vehicles[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2024, 6 (3): 420- 434
doi: 10.1109/TBIOM.2024.3400866
5 HAUFE S, TREDER M S, GUGLER M F, et al EEG potentials predict upcoming emergency brakings during simulated driving[J]. Journal of Neural Engineering, 2011, 8 (5): 056001
doi: 10.1088/1741-2560/8/5/056001
6 HAUFE S, KIM J W, KIM I H, et al Electrophysiology-based detection of emergency braking intention in real-world driving[J]. Journal of Neural Engineering, 2014, 11 (5): 056011
doi: 10.1088/1741-2560/11/5/056011
7 KIM I H, KIM J W, HAUFE S, et al Detection of braking intention in diverse situations during simulated driving based on EEG feature combination[J]. Journal of Neural Engineering, 2015, 12 (1): 016001
doi: 10.1088/1741-2560/12/1/016001
8 LEE S M, KIM J W, LEE S W. Detecting driver’s braking intention using recurrent convolutional neural networks based EEG analysis [C]// Proceedings of the 4th IAPR Asian Conference on Pattern Recognition. Nanjing: IEEE, 2018: 840–845.
9 HERNÁNDEZ L G, MOZOS O M, FERRÁNDEZ J M, et al EEG-based detection of braking intention under different car driving conditions[J]. Frontiers in Neuroinformatics, 2018, 12: 29
doi: 10.3389/fninf.2018.00029
10 TENG T, BI L, LIU Y EEG-based detection of driver emergency braking intention for brain-controlled vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19 (6): 1766- 1773
doi: 10.1109/TITS.2017.2740427
11 WANG H, BI L, FEI W, et al. An EEG-based multi-classification method of braking intentions for driver-vehicle interaction [C]// Proceedings of the IEEE International Conference on Real-time Computing and Robotics. Irkutsk: IEEE, 2020: 438–441.
12 NGUYEN T H, CHUNG W Y Detection of driver braking intention using EEG signals during simulated driving[J]. Sensors, 2019, 19 (13): 2863
doi: 10.3390/s19132863
13 ZHANG X, YAN X, STYLLI J, et al Exploring the effects of EEG signals on collision cases happening in the process of young drivers’ braking[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 80: 381- 398
doi: 10.1016/j.trf.2021.05.010
14 NACPIL E J C, WANG Z, GUAN M, et al EEG-based emergency braking prediction using data ablation and SVM classification[J]. IEEE Sensors Journal, 2023, 23 (14): 16013- 16019
doi: 10.1109/JSEN.2023.3283447
15 LIANG X, YU Y, LIU Y, et al EEG-based emergency braking intention detection during simulated driving[J]. BioMedical Engineering OnLine, 2023, 22 (1): 65
doi: 10.1186/s12938-023-01129-4
16 FAHIMI F, ZHANG Z, GOH W B, et al Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI[J]. Journal of Neural Engineering, 2019, 16 (2): 026007
doi: 10.1088/1741-2552/aaf3f6
17 DING Y, ROBINSON N, TONG C, et al LGGNet: learning from local-global-graph representations for brain–computer interface[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (7): 9773- 9786
doi: 10.1109/TNNLS.2023.3236635
18 WANG H, BI L, TENG T Neural correlates and detection of braking intention under critical situations based on the power spectra of electroencephalography signals[J]. Science China Information Sciences, 2019, 63 (1): 119202
19 LACHAUX J P, RODRIGUEZ E, MARTINERIE J, et al Measuring phase synchrony in brain signals[J]. Human Brain Mapping, 1999, 8 (4): 194- 208
doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
20 STAM C J, NOLTE G, DAFFERTSHOFER A Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources[J]. Human Brain Mapping, 2007, 28 (11): 1178- 1193
doi: 10.1002/hbm.20346
21 PEARSON K Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs[J]. Proceedings of the Royal Society of London, 1897, 60: 489- 498
22 LV R, CHANG W, YAN G, et al A novel recognition and classification approach for motor imagery based on spatio-temporal features[J]. IEEE Journal of Biomedical and Health Informatics, 2025, 29 (1): 210- 223
doi: 10.1109/JBHI.2024.3464550
23 袁月婷, 闫光辉, 常文文, 等 基于脑电信号空域特征的紧急制动行为识别[J]. 电子科技大学学报, 2024, 53 (1): 84- 91
YUAN Yueting, YAN Guanghui, CHANG Wenwen, et al Emergency braking behavior recognition based on spatial features of EEG[J]. Journal of University of Electronic Science and Technology of China, 2024, 53 (1): 84- 91
24 SCHIRRMEISTER R T, SPRINGENBERG J T, FIEDERER L D J, et al Deep learning with convolutional neural networks for EEG decoding and visualization[J]. Human Brain Mapping, 2017, 38 (11): 5391- 5420
doi: 10.1002/hbm.23730
25 SHUMAN D I, NARANG S K, FROSSARD P, et al The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30 (3): 83- 98
doi: 10.1109/MSP.2012.2235192
26 常文文, 闫光辉, 杨志飞, 等 基于脑电熵值特征和功能连接的不同线型道路下驾驶状态检测[J]. 电子学报, 2023, 51 (10): 2874- 2883
CHANG Wenwen, YAN Guanghui, YANG Zhifei, et al Detection of driving state under different curve road based on entropy and functional connectivity of EEG[J]. Acta Electronica Sinica, 2023, 51 (10): 2874- 2883
27 LAWHERN V J, SOLON A J, WAYTOWICH N R, et al EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces[J]. Journal of Neural Engineering, 2018, 15 (5): 056013
doi: 10.1088/1741-2552/aace8c
28 HOU Y, JIA S, LUN X, et al GCNs-net: a graph convolutional neural network approach for decoding time-resolved EEG motor imagery signals[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (6): 7312- 7323
doi: 10.1109/TNNLS.2022.3202569
[1] 魏新雨,饶蕾,范光宇,陈年生,程松林,杨定裕. 用于无人机遥感图像的高精度实时语义分割网络[J]. 浙江大学学报(工学版), 2025, 59(7): 1411-1420.
[2] 张梦瑶,周杰,李文婷,赵勇. 结合全局信息和局部信息的三维网格分割框架[J]. 浙江大学学报(工学版), 2025, 59(5): 912-919.
[3] 刘登峰,郭文静,陈世海. 基于内容引导注意力的车道线检测网络[J]. 浙江大学学报(工学版), 2025, 59(3): 451-459.
[4] 陈江浩,杨军. 结合深度可分离卷积的多源遥感融合影像目标检测[J]. 浙江大学学报(工学版), 2025, 59(12): 2545-2555.
[5] 朵琳,殷瑜,段威,张芸,任勇. 基于改进YOLOv8的船舶目标检测算法[J]. 浙江大学学报(工学版), 2025, 59(11): 2379-2388.
[6] 安春丽,张碧玲,赵国安,王博,刘岩. 基于FFT-CNN-GCN的电网故障诊断[J]. 浙江大学学报(工学版), 2025, 59(10): 2205-2212.
[7] 杨冰,徐楚阳,姚金良,向学勤. 基于单目RGB图像的三维手部姿态估计方法[J]. 浙江大学学报(工学版), 2025, 59(1): 18-26.
[8] 李宜轩,李颖,肖倩,王灵月,尹宁,杨硕. 不同情绪错误记忆的脑电微状态功能网络分析[J]. 浙江大学学报(工学版), 2025, 59(1): 49-61.
[9] 刘欢,李云红,张蕾涛,郭越,苏雪平,朱耀麟,侯乐乐. 基于MA-ConvNext网络和分步关系知识蒸馏的苹果叶片病害识别[J]. 浙江大学学报(工学版), 2024, 58(9): 1757-1767.
[10] 李劲业,李永强. 融合知识图谱的时空多图卷积交通流量预测[J]. 浙江大学学报(工学版), 2024, 58(7): 1366-1376.
[11] 韩康,战洪飞,余军合,王瑞. 基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断[J]. 浙江大学学报(工学版), 2024, 58(6): 1285-1295.
[12] 邢志伟,朱书杰,李彪. 基于改进图卷积神经网络的航空行李特征感知[J]. 浙江大学学报(工学版), 2024, 58(5): 941-950.
[13] 刘毅,陈一丹,高琳,洪姣. 基于多尺度特征融合的轻量化道路提取模型[J]. 浙江大学学报(工学版), 2024, 58(5): 951-959.
[14] 曹寅,秦俊平,高彤,马千里,任家琪. 基于生成对抗网络的文本两阶段生成高质量图像方法[J]. 浙江大学学报(工学版), 2024, 58(4): 674-683.
[15] 韩俊,袁小平,王准,陈烨. 基于YOLOv5s的无人机密集小目标检测算法[J]. 浙江大学学报(工学版), 2023, 57(6): 1224-1233.