Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (2): 396-403    DOI: 10.3785/j.issn.1008-973X.2026.02.018
交通工程、土木工程     
基于时间-事件混合触发的车辆队列输出反馈控制
杨盼盼(),梁长正,闫茂德,孟宇航
长安大学 电子与控制工程学院,陕西 西安 710064
Time-event hybrid-triggered output feedback control for vehicle platoons
Panpan YANG(),Changzheng LIANG,Maode YAN,Yuhang MENG
School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China
 全文: PDF(2617 KB)   HTML
摘要:

针对车辆部分状态信息不可测量,并考虑控制性能与通信资源的平衡问题,提出基于时间-事件混合触发的车辆队列输出反馈控制方法. 考虑传感器成本及数据获取精度导致的车辆部分状态信息不可测量问题,利用车辆位置信息设计状态观测器对无法测量的速度、加速度信息进行估计,使估计误差趋近于任意小的重构误差. 提出时间-事件混合触发机制,当车辆运动状态波动较大时,采用时间触发机制降低系统跟踪误差;当车辆稳态运动时,切换至事件触发机制以节省通信资源. 设计基于反步法的输出反馈控制器,实现仅基于车辆位置信息的队列控制. 理论分析证明,所提方法性能稳定,使用时间-事件混合触发机制能够有效排除芝诺(Zeno)行为. 在市郊驾驶循环(EUDC)工况下的仿真实验结果表明,相较于单一的时间或事件触发方式,所提方法能够在保证车辆队列控制性能的同时显著节省通信资源.

关键词: 车辆队列时间-事件混合触发输出反馈状态观测器反步控制    
Abstract:

The time-event hybrid-triggered output feedback control method for vehicle platoons was proposed in consideration of the unmeasurable partial state information and the balance between control performance and communication resources. For the unknown states of vehicles due to sensor cost and data acquisition accuracy, an observer that estimates the unknown velocity and acceleration from position was designed, achieving an arbitrarily small reconstruction error. A novel time-event hybrid-triggered mechanism was developed: the time-triggered mechanism was applied in a state fluctuation process to achieve the convergence of the tracking error, and the system switched to the event-triggered fashion in a steady state to reduce the communication resources. By employing the backstepping control technique, an output-feedback controller was devised to achieve platoon control using only position information. The stability of the proposed method and the avoidance of the Zeno phenomenon using the time-event hybrid-triggered mechanism were demonstrated through theoretical analysis. Simulation results under the extra urban driving cycle (EUDC) show that, compared with the single time/event-triggered mechanism, the proposed method maintains platoon control performance while significantly reducing communication resources.

Key words: vehicle platoon    time-event hybrid trigger    output feedback    state observer    backstepping control
收稿日期: 2025-02-12 出版日期: 2026-02-03
CLC:  TP 273  
基金资助: 国家自然科学基金资助项目(52372406);陕西省重点研发计划资助项目(2024GX-YBXM-258).
作者简介: 杨盼盼(1985—),男,副教授,从事智能网联汽车队列控制研究. orcid.org/0000-0002-4450-9453. E-mail:panpanyang@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨盼盼
梁长正
闫茂德
孟宇航

引用本文:

杨盼盼,梁长正,闫茂德,孟宇航. 基于时间-事件混合触发的车辆队列输出反馈控制[J]. 浙江大学学报(工学版), 2026, 60(2): 396-403.

Panpan YANG,Changzheng LIANG,Maode YAN,Yuhang MENG. Time-event hybrid-triggered output feedback control for vehicle platoons. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 396-403.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.02.018        https://www.zjujournals.com/eng/CN/Y2026/V60/I2/396

图 1  领航-跟随拓扑结构的车辆队列
图 2  所提方法的系统控制结构图
图 3  市郊驾驶循环工况下的车辆速度
图 4  车辆队列控制仿真结果
图 5  车辆信号采样间隔
图 6  速度与加速度的状态估计误差曲线
机制nt
车辆1车辆2车辆3车辆4车辆5
时间触发[29]40 00040 00040 00040 00040 000
事件触发[15]449425445423408
混合触发3 6563 6593 7333 7983 730
表 1  不同触发机制下的触发次数
图 7  不同触发机制下的跟踪误差
1 YUE W, LI C, MAO G, et al Evolution of road traffic congestion control: a survey from perspective of sensing, communication, and computation[J]. China Communications, 2021, 18 (12): 151- 177
doi: 10.23919/JCC.2021.12.010
2 CAO M, LI V O K, SHUAI Q DeepGAL: intelligent vehicle control for traffic congestion alleviation at intersections[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (7): 6836- 6848
doi: 10.1109/TITS.2023.3257199
3 LIU X, YAN M, YANG P, et al Unknown input observer based neuro-adaptive fault-tolerant control for vehicle platoons with sensor fault and output quantization[J]. Control Engineering Practice, 2024, 150: 106007
doi: 10.1016/j.conengprac.2024.106007
4 宋家成, 闫茂德, 杨盼盼, 等 基于数据驱动的鲁棒反步自适应巡航控制[J]. 浙江大学学报: 工学版, 2022, 56 (3): 485- 493
SONG Jiacheng, YAN Maode, YANG Panpan, et al Robust backstepping adaptive cruise control based on data-driven[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (3): 485- 493
doi: 10.3785/j.issn.1008-973X.2022.03.007
5 ZHU Y, LI Y, ZENG K, et al Finite-time cooperative control for vehicle platoon with sliding-mode controller and disturbance observer[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25 (9): 10679- 10688
doi: 10.1109/TITS.2024.3418631
6 HU M, WANG X, BIAN Y, et al Disturbance observer-based cooperative control of vehicle platoons subject to mismatched disturbance[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8 (4): 2748- 2758
doi: 10.1109/TIV.2023.3237703
7 VARGAS F J, GORDON M A, PETERS A A, et al On stochastic string stability with applications to platooning over additive noise channels[J]. Automatica, 2025, 171: 111923
doi: 10.1016/j.automatica.2024.111923
8 LIU G, LIU Y, XIE X Consensus of linear discrete-time connected autonomous vehicle systems with time delays and multiplicative noise[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25 (5): 3523- 3534
doi: 10.1109/TITS.2023.3330823
9 BERNARD P, ANDRIEU V, ASTOLFI D Observer design for continuous-time dynamical systems[J]. Annual Reviews in Control, 2022, 53: 224- 248
doi: 10.1016/j.arcontrol.2021.11.002
10 ZHOU Q, XU X, LIU L, et al Output feedback stabilization of linear systems with infinite distributed input and output delays[J]. Information Sciences, 2021, 576: 54- 67
doi: 10.1016/j.ins.2021.06.060
11 JIANG S, WANG S, ZHAN Z, et al Containment control of discrete-time multi-agent systems with application to escort control of multiple vehicles[J]. International Journal of Robust and Nonlinear Control, 2022, 32 (12): 6913- 6938
doi: 10.1002/rnc.6176
12 WANG C, WANG D, PENG Z Distributed output-feedback control of unmanned container transporter platooning with uncertainties and disturbances using event-triggered mechanism[J]. IEEE Transactions on Vehicular Technology, 2022, 71 (1): 162- 170
doi: 10.1109/TVT.2021.3130006
13 ZHANG H, LIU J, WANG Z, et al Distributed adaptive event-triggered control and stability analysis for vehicular platoon[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (3): 1627- 1638
doi: 10.1109/TITS.2020.2974280
14 范利蓉, 王芳, 周超, 等 状态时延和全状态约束下的多智能体系统自适应事件触发控制[J]. 控制与决策, 2022, 37 (4): 892- 902
FAN Lirong, WANG Fang, ZHOU Chao, et al Adaptive event-triggered control for multi-agent systems with state time-delays and full state constraints[J]. Control and Decision, 2022, 37 (4): 892- 902
doi: 10.13195/j.kzyjc.2020.1046
15 YANG P, WANG X, CHEN X, et al Fixed time event-triggered control for high-order nonlinear uncertain systems with time-varying full state constraints[J]. International Journal of Robust and Nonlinear Control, 2024, 34 (1): 703- 727
doi: 10.1002/rnc.6998
16 KANG W, LIU C X Event-triggered stabilization for large-scale interconnected systems with time delays[J]. International Journal of Robust and Nonlinear Control, 2022, 32 (13): 7469- 7487
doi: 10.1002/rnc.6225
17 GUO T, LIU Y Connectivity-preserving consensus: an adaptive event-triggered strategy[J]. International Journal of Robust and Nonlinear Control, 2024, 34 (6): 3912- 3928
doi: 10.1002/rnc.7169
18 SHI X, YAN H, XU C Improved adaptive dynamic event-triggered consensus of multi-agent systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70 (12): 4509- 4513
19 WANG J, GUO J, LI K, et al Distributed adaptive event-triggered control of connected automated vehicle platoon systems with spoofing cyber attacks[J]. IEEE Transactions on Vehicular Technology, 2024, 73 (12): 18186- 18197
doi: 10.1109/TVT.2024.3436052
20 XU T, SUN Z, WEN G, et al Data-driven dynamic event-triggered control[J]. IEEE Transactions on Automatic Control, 2024, 69 (12): 8804- 8811
doi: 10.1109/TAC.2024.3417088
21 WANG W, WANG C, WANG Z, et al Nonlinear consensus-based autonomous vehicle platoon control under event-triggered strategy in the presence of time delays[J]. Applied Mathematics and Computation, 2021, 404: 126246
doi: 10.1016/j.amc.2021.126246
22 CHEN X, YIN L Y, LIU Y T, et al Hybrid-triggered consensus for multi-agent systems with time-delays, uncertain switching topologies, and stochastic cyber-attacks[J]. Chinese Physics B, 2019, 28 (9): 090701
doi: 10.1088/1674-1056/ab38a8
23 DING L, HAN Q L, GE X, et al An overview of recent advances in event-triggered consensus of multiagent systems[J]. IEEE Transactions on Cybernetics, 2018, 48 (4): 1110- 1123
doi: 10.1109/TCYB.2017.2771560
24 LIU J, WU Z G, YUE D, et al Stabilization of networked control systems with hybrid-driven mechanism and probabilistic cyber attacks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51 (2): 943- 953
doi: 10.1109/TSMC.2018.2888633
25 LIAN Z, SHI P, LIM C C Dynamic hybrid-triggered-based fuzzy control for nonlinear networks under multiple cyberattacks[J]. IEEE Transactions on Fuzzy Systems, 2022, 30 (9): 3940- 3951
doi: 10.1109/TFUZZ.2021.3134745
26 谭伟, 刘景升, 祖晖, 等 参数不确定和扰动下智能汽车路径跟踪控制[J]. 浙江大学学报: 工学版, 2023, 57 (4): 702- 711
TAN Wei, LIU Jingsheng, ZU Hui, et al Intelligent vehicle path tracking control under parametric uncertainties and external disturbances[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (4): 702- 711
doi: 10.3785/j.issn.1008-973X.2023.04.007
27 WANG J, LUO X, YAN J, et al Distributed integrated sliding mode control for vehicle platoons based on disturbance observer and multi power reaching law[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (4): 3366- 3376
doi: 10.1109/TITS.2020.3035764
28 POLYCARPOU M M, IOANNOU P A A robust adaptive nonlinear control design[J]. Automatica, 1996, 32 (3): 423- 427
doi: 10.1016/0005-1098(95)00147-6
[1] 孟芸,苗鹏辉,闫茂德,左磊. 考虑乘客舒适度的混合车辆队列最优能耗控制方法[J]. 浙江大学学报(工学版), 2025, 59(10): 2086-2095.
[2] 臧万顺,沈刚,赵军,臧克江. 基于扩张滑模观测器的电液伺服系统鲁棒控制[J]. 浙江大学学报(工学版), 2024, 58(3): 611-621.
[3] 皇金锋,周杰,黄红杰. 基于滑模自抗扰的储能变流器控制策略[J]. 浙江大学学报(工学版), 2024, 58(10): 2171-2181.
[4] 宋家成,闫茂德,杨盼盼,巨永锋,岳靖斐. 基于数据驱动的鲁棒反步自适应巡航控制[J]. 浙江大学学报(工学版), 2022, 56(3): 485-493.
[5] 汪佳佳,蔡英凤,陈龙,汪少华,施德华. 基于扩张状态观测器估计的混合动力汽车协调控制[J]. 浙江大学学报(工学版), 2021, 55(7): 1225-1233.
[6] 雷驰,吴萌岭. 基于反步法的列车制动缸压力精确控制[J]. 浙江大学学报(工学版), 2021, 55(3): 462-471.
[7] 王玉琼,高松,王玉海,徐艺,郭栋,周英超. 高速无人驾驶车辆轨迹跟踪和稳定性控制[J]. 浙江大学学报(工学版), 2021, 55(10): 1922-1929.
[8] 邵杭蕾,张冬梅. 基于静态输出反馈协议的多智能体系统同步[J]. 浙江大学学报(工学版), 2020, 54(7): 1308-1315.
[9] 吕良,陈虹,宫洵,赵海光,胡云峰. 汽油发动机冷却系统建模与水温控制[J]. 浙江大学学报(工学版), 2019, 53(6): 1119-1129.
[10] 郑学科, 王晓亮. 考虑螺旋桨动力学模型的临近空间飞艇控制[J]. 浙江大学学报(工学版), 2017, 51(7): 1428-1436.
[11] 檀盼龙, 孙青林, 陈增强. 自抗扰技术在动力翼伞轨迹跟踪控制中的应用[J]. 浙江大学学报(工学版), 2017, 51(5): 992-999.
[12] 袁庆伟, 赵荣祥. 改善IPMSM动静态性能的定子磁链矢量控制方案[J]. 浙江大学学报(工学版), 2017, 51(12): 2420-2428.
[13] 张明晖,杨家强,陈磊,楼佳羽. 基于扩张状态观测器的永磁电机电流预测控制[J]. 浙江大学学报(工学版), 2016, 50(7): 1387-1392.
[14] 罗高生, 顾临怡, 李林. 基于鲁棒观测器的肘关节鲁棒自适应控制[J]. 浙江大学学报(工学版), 2014, 48(5): 1-.
[15] 罗高生, 顾临怡, 李林. 基于鲁棒观测器的肘关节鲁棒自适应控制[J]. 浙江大学学报(工学版), 2014, 48(10): 1758-1766.