Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (3): 469-479    DOI: 10.3785/j.issn.1008-973X.2025.03.004
交通工程、土木工程     
基于改进遗传算法的临时转播塔结构优化设计方法
邢国华(),陆勇健,苗鹏勇*(),陈思锦
长安大学 建筑工程学院,陕西 西安 710061
Optimal design method of temporary broadcasting tower structure based on improved genetic algorithm
Guohua XING(),Yongjian LU,Pengyong MIAO*(),Sijin CHEN
School of Civil Engineering, Chang’an University, Xi’an 710061, China
 全文: PDF(1957 KB)   HTML
摘要:

针对临时转播塔结构用钢质量较大且设计过程精细化程度低的问题,提出模块化临时转播塔结构及其优化设计方法. 所提设计方法将参数化建模与综合优化相结合,利用ANSYS建立结构参数化有限元模型,考虑结构设计参数在寻优过程中引起的风荷载变化;采用初始替换、差异化、自适应遗传等5种策略提升浮点数编码遗传算法(FGA)的搜索能力和收敛性能,提出改进浮点数编码遗传算法(IFGA),综合优化临时转播塔结构的尺寸、形状和杆件布置形式,实现结构轻量化设计. 工程实例的应用表明,模块化临时转播塔结构的力学性能良好;在结构轻量化方面,IFGA算法相较于FGA算法优化结果在用钢质量上降低18.9%,相较于学校算法、鲸鱼算法及改进灰狼算法具有更高的计算效率和寻优能力;建议的优化设计方法高效、可靠,能在确保结构安全的前提下较初始方案在用钢质量上降低33.2%.

关键词: 结构优化遗传算法有限元轻量化设计临时转播塔    
Abstract:

A modular temporary broadcasting tower structure and its optimal design method were proposed to address the issues of excessive steel usage and low design refinement in temporary broadcast tower structures. The optimal design method combined parametric modeling and comprehensive optimization. Parametric finite element model was achieved using ANSYS to consider wind load fluctuations caused by structural design parameters during the optimization process. Five strategies including initial replacement, differentiation and adaptive genetics were used to enhance the search capability and convergence performance of the float-encoded genetic algorithm (FGA), leading to the proposal of an improved float-encoded genetic algorithm (IFGA). The IFGA was then utilized to comprehensively optimize the cross-section, shape, and members’ arrangement for the temporary broadcasting tower structure to achieve a lightweight plan. Validating in practical engineering revealed that the modular temporary broadcasting tower structure had excellent mechanical performance. In terms of structural lightweighting, the IFGA reduced the quality of steel used by 18.9% compared with the FGA, and it surpassed the school algorithm, whale algorithm and improved grey wolf algorithm in computational efficiency and optimization prowess. As a result, the proposed optimal design method was efficient and reliable, could save 33.2% of the quality of steel used compared with the original plan while ensuring structural safety.

Key words: structural optimization    genetic algorithm    finite element    lightweight design    temporary broadcasting tower
收稿日期: 2023-12-26 出版日期: 2025-03-10
CLC:  TU 311.41  
基金资助: 陕西省重点研发计划“两链”融合企业(院所)联合重点专项(2022LL-JB-13).
通讯作者: 苗鹏勇     E-mail: ghxing@chd.edu.cn;p.y.miao@outlook.com
作者简介: 邢国华(1983—),男,教授,从事结构设计与防灾减灾研究. orcid.org/0000-0003-3725-5704. E-mail:ghxing@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
邢国华
陆勇健
苗鹏勇
陈思锦

引用本文:

邢国华,陆勇健,苗鹏勇,陈思锦. 基于改进遗传算法的临时转播塔结构优化设计方法[J]. 浙江大学学报(工学版), 2025, 59(3): 469-479.

Guohua XING,Yongjian LU,Pengyong MIAO,Sijin CHEN. Optimal design method of temporary broadcasting tower structure based on improved genetic algorithm. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 469-479.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.004        https://www.zjujournals.com/eng/CN/Y2025/V59/I3/469

图 1  塔架标准节
图 2  模块化临时转播塔结构
基因位设计变量初始方案优化时取值范围及精度
x1立柱外径/mm200自定义
x2横杆外径/mm66自定义
x3横隔外径/mm80自定义
x4斜杆外径/mm80自定义
x5拉索束数6[1, 7],整数
x6标准节宽度/m3.4自定义
x7拉索宽度/m50自定义
x8拉索端部近似高度/m74.6自定义
x9斜杆布置形式交叉形[1, 5],整数
x10标准节中横隔层数2[2, 3],整数
x11拉索初应力/MPa150自定义
表 1  临时转播塔结构设计变量
结果类型f1/Hzf2/Hzf3/Hzf4/Hzw/mm
ANSYS0.770100.770110.772600.7739479.435
SAP20000.746950.747010.747100.7488179.380
midas Gen0.746980.747000.746940.7487979.222
ε1/%3.013.003.303.250.07
ε2/%3.003.003.323.250.27
表 2  有限元模型计算结果对比
图 3  斜杆布置形式
图 4  适应度计算流程
图 5  种群初始化流程
图 6  种群差异化流程
图 7  IFGA算法的计算流程
图 8  优化设计系统的部分交互界面
图 9  改进前后遗传算法的初始种群
算法名称SM/t
FGA688040.42
RGA848038.42
LRGA1082837.22
LRSGA1298736.44
LRSDGA2545333.80
IFGA2312832.77
表 3  不同策略遗传算法的优化结果与计算成本
图 10  不同策略遗传算法的进化历程
算法名称SM/t
IFGA2312832.77
WOA2312940.00
SBO2331633.54
IGWO2320034.43
表 4  不同算法的优化结果与计算成本
图 11  不同算法的进化历程
图 12  结构总质量的进化历程
构件类型M1/tM2/tΔ/%Q/%
立柱24.34121.311?12.4521.36
横杆3.1231.240?60.3013.27
斜杆8.4012.329?72.2842.80
横隔2.1631.153?46.687.12
拉索4.7372.546?46.2615.45
结构42.76628.579?33.17
表 5  优化前后设计方案的质量变化
图 13  优化前后临时转播塔的标准节
图 14  部分约束变量的进化历程
图 15  优化前后杆件的等效应力
设计变量x1/mmx2/mmx3/mmx4/mmx5x6/m
优化前20066808063.4
优化后18942596032.5
设计变量x7/mx8/mx9x10x11/MPa
优化前50.074.622150
优化后54.379.812186
表 6  优化前后结构设计变量的对比
1 HERNANDEZ-ESTRADA E, LASTRES-DANGUILLECOURT O, ROBLES-OCAMPO J B, et al Considerations for the structural analysis and design of wind turbine towers: a review[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110447
doi: 10.1016/j.rser.2020.110447
2 GKANTOU M, MARTINEZ-VAZQUEZ P, BANIOTOPOULOS C On the structural response of a tall hybrid onshore wind turbine tower[J]. Procedia Engineering, 2017, 199: 3200- 3205
doi: 10.1016/j.proeng.2017.09.535
3 CHEN J, YANG R, MA R, et al Design optimization of wind turbine tower with lattice-tubular hybrid structure using particle swarm algorithm[J]. The Structural Design of Tall and Special Buildings, 2008, 25: 743- 758
doi: 10.1002/tal.1281
4 郑瑞杰, 马人乐 变截面构架式风力发电塔架 GA 优化[J]. 土木建筑与环境工程, 2009, 31 (6): 1- 6
ZHENG Ruijie, MA Renle GA optimization for variable cross section frame wind turbine[J]. Journal of Civil and Environmental Engineering, 2009, 31 (6): 1- 6
5 HU X, ZHANG Z, ZHU Z, et al. Structure Design and Optimization of Self-standing Modular Temporary Tower of 110kV Overhead Transmission Lines [C]// 5th International Conference on Machinery, Materials and Computing Technology . Beijing: Atlantis Press, 2017.
6 RENKAVIESKI C, PARPINELLI R S Meta-heuristic algorithms to truss optimization: Literature mapping and application[J]. Expert Systems with Applications, 2021, 182: 115197
doi: 10.1016/j.eswa.2021.115197
7 MORTAZAVI A, TOĞAN V, MOLOODPOOR M Solution of structural and mathematical optimization problems using a new hybrid swarm intelligence optimization algorithm[J]. Advances in Engineering Software, 2019, 127: 106- 123
doi: 10.1016/j.advengsoft.2018.11.004
8 SIVAKUMAR P, RAJARAMAN A, SAMUEL KNIGHT G, et al Object-oriented optimization approach using genetic algorithms for lattice towers[J]. Journal of Computing in Civil Engineering, 2004, 18 (2): 162- 171
doi: 10.1061/(ASCE)0887-3801(2004)18:2(162)
9 ARTAR M A comparative study on optimum design of multi-element truss structures[J]. Steel and Composite Structures, 2016, 22 (3): 521- 535
doi: 10.12989/scs.2016.22.3.521
10 KAVEH A, ZAKIAN P Improved GWO algorithm for optimal design of truss structures[J]. Engineering with Computers, 2018, 34 (4): 685- 707
doi: 10.1007/s00366-017-0567-1
11 JAWAD F K, OZTURK C, WANG D, et al Sizing and layout optimization of truss structures with artificial bee colony algorithm[J]. Structures, 2021, 30: 546- 559
doi: 10.1016/j.istruc.2021.01.016
12 COUCEIRO I, PARÍS J, MARTÍNEZ S, et al Structural optimization of lattice steel transmission towers[J]. Engineering Structures, 2016, 117: 274- 286
doi: 10.1016/j.engstruct.2016.03.005
13 COUCEIRO I, PARíS J, MARTíNEZ S, et al Computer software for analysis and design optimization of power transmission structures by simulated annealing and sensitivity analysis[J]. Engineering with Computers, 2021, 37 (4): 3649- 3663
doi: 10.1007/s00366-020-01022-x
14 HUANG X, LI B, ZHOU X, et al Geometric optimisation analysis of steel–concrete hybrid wind turbine towers[J]. Structures, 2022, 35: 1125- 1137
doi: 10.1016/j.istruc.2021.08.036
15 TSAVDARIDIS K D, NICOLAOU A, MISTRY A D, et al Topology optimisation of lattice telecommunication tower and performance-based design considering wind and ice loads[J]. Structures, 2020, 27: 2379- 2399
doi: 10.1016/j.istruc.2020.08.010
16 DE SOUZA R R, FADEL MIGUEL L F, LOPEZ R H, et al A procedure for the size, shape and topology optimization of transmission line tower structures[J]. Engineering Structures, 2016, 111: 162- 184
doi: 10.1016/j.engstruct.2015.12.005
17 DEGERTEKIN S O, LAMBERTI L, UGUR I B Sizing, layout and topology design optimization of truss structures using the Jaya algorithm[J]. Applied soft computing, 2018, 70: 903- 928
doi: 10.1016/j.asoc.2017.10.001
18 KHODZHAIEV M, REUTER U Structural optimization of transmission towers using a novel genetic algorithm approach with a variable length genome[J]. Engineering Structures, 2021, 240: 112306
doi: 10.1016/j.engstruct.2021.112306
19 金树, 任宗栋, 李宏男, 等 输电塔结构离散变量优化设计方法[J]. 工程力学, 2016, 33 (11): 84- 94
JIN Shu, REN Zongdong, LI Hongnan, et al Discrete variable optimal design method of transmission tower structure[J]. Engineering Mechanics, 2016, 33 (11): 84- 94
doi: 10.6052/j.issn.1000-4750.2015.02.0102
20 LAGAROS N D, PLEVRIS V, KALLIORAS N A The mosaic of metaheuristic algorithms in structural optimization[J]. Archives of Computational Methods in Engineering, 2022, 29 (7): 5457- 5492
doi: 10.1007/s11831-022-09773-0
21 KAVEH A, HOSSEINI S M, ZAERREZA A Improved Shuffled Jaya algorithm for sizing optimization of skeletal structures with discrete variables[J]. Structures, 2021, 29: 107- 128
doi: 10.1016/j.istruc.2020.11.008
22 KAVEH A, KAMALINEJAD M, BIABANI HAMEDANI K, et al Quantum teaching-learning-based optimization algorithm for sizing optimization of skeletal structures with discrete variables[J]. Structures, 2021, 32: 1798- 1819
doi: 10.1016/j.istruc.2021.03.046
23 中华人民共和国住房和城乡建设部. 高耸结构设计标准: GB 50135—2019 [S]. 北京: 中国计划出版社, 2019.
24 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012 [S]. 北京: 中国建筑工业出版社, 2012.
25 中国电力企业联合会. 110kV~750kV架空输电线路设计规范: GB 50545—2010 [S]. 北京: 中国计划出版社, 2010.
26 中华人民共和国住房和城乡建设部. 钢结构设计标准: GB 50017—2017 [S]. 北京: 中国建筑工业出版社, 2017.
27 GENTILS T, WANG L, KOLIOS A Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm[J]. Applied Energy, 2017, 199: 187- 204
doi: 10.1016/j.apenergy.2017.05.009
28 陈俊岭, 何欣恒, 丛欧 基于改进遗传算法的钢-混组合式风电机组塔架优化设计研究[J]. 太阳能学报, 2021, 42 (7): 359- 365
CHEN Junling, HE Xinheng, CONG Ou Design optimization of steel-concrete hybrid wind turbine tower based on improved genetic algorithm[J]. Acta Energiae Solaris Sinica, 2021, 42 (7): 359- 365
29 ALETI A, MOSER I A systematic literature review of adaptive parameter control methods for evolutionary algorithms[J]. ACM Computing Surveys, 2016, 49 (3): 1- 35
30 HERRERA F, LOZANO M Gradual distributed real-coded genetic algorithms[J]. IEEE transactions on evolutionary computation, 2000, 4 (1): 43- 63
doi: 10.1109/4235.843494
31 陈昆, 石国桢 浮点数编码遗传算法变异概率的选取[J]. 武汉理工大学学报: 交通科学与工程版, 2001, 25 (4): 496- 499
CHEN Kun, SHI Guozhen Selection of mutation probability of floating-point number code genetic algorithm[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2001, 25 (4): 496- 499
32 MIRJALILI S, LEWIS A The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51- 67
doi: 10.1016/j.advengsoft.2016.01.008
[1] 吴洋,肖磊,王玮彦,许金鑫,杜原,杨泊莘,安琦. 电梯安全钳制动块与导轨接触应力的有限元计算方法[J]. 浙江大学学报(工学版), 2025, 59(1): 109-119.
[2] 朱云辰,程明骏,郑昕文,岑沛立,郗祥硕,黄杉,华晨,黄海. 基于优化第三代非支配排序遗传算法的城市应急设施模糊选址[J]. 浙江大学学报(工学版), 2024, 58(9): 1832-1843.
[3] 张兴标,王涛,姚森,叶华文,王路,白伦华. 大跨度公铁两用斜拉-悬索协作体系桥断索动力响应[J]. 浙江大学学报(工学版), 2024, 58(9): 1874-1885.
[4] 薛雅丽,李寒雁,欧阳权,崔闪,洪君. 战场环境下遗传黏菌算法的多机协同任务分配[J]. 浙江大学学报(工学版), 2024, 58(8): 1748-1756.
[5] 罗易飞,胡彬,赵鑫,温泽峰. 缩尺车轮-环轨滚动接触与磨耗特性仿真分析[J]. 浙江大学学报(工学版), 2024, 58(6): 1275-1284.
[6] 赵杰,刘锋,夏灵,范一峰. 基于遗传算法-序列二次规划的磁共振被动匀场优化方法[J]. 浙江大学学报(工学版), 2024, 58(6): 1305-1314.
[7] 李立峰,侯坤,邹德强,彭浩,李凌霄. 中等跨径钢板组合梁截面布置优化[J]. 浙江大学学报(工学版), 2024, 58(3): 510-517.
[8] 陈丽芳,杨火根,陈智超,杨杰. B样条技术与遗传算法融合的全局路径规划[J]. 浙江大学学报(工学版), 2024, 58(12): 2520-2530.
[9] 吴越安,杜昌平,杨睿,俞佳浩,方天睿,郑耀. 基于改进遗传算法的倾转旋翼无人机区域覆盖路径规划[J]. 浙江大学学报(工学版), 2024, 58(10): 2031-2039.
[10] 周敉,冯昭,张鹏利,秦伟. 大流量斜拉压力输水管桥振动台模型试验研究[J]. 浙江大学学报(工学版), 2024, 58(10): 2149-2161.
[11] 郑好,曹弋,王珊. 考虑站点换乘的地铁多车站接运公交线路优化[J]. 浙江大学学报(工学版), 2024, 58(10): 2162-2170.
[12] 刘鹏,路庆昌,秦汉,崔欣. 道路网络多阶段抗灾能力优化模型构建与应用[J]. 浙江大学学报(工学版), 2024, 58(1): 96-108.
[13] 金俊超,景来红,杨风威,宋志宇,尚朋阳. 脆塑性迭代逼近算法的改进[J]. 浙江大学学报(工学版), 2023, 57(9): 1706-1717.
[14] 王玲茂,赵唯坚. 基于肋尺度精细化建模的机械锚固钢筋拉拔性能模拟[J]. 浙江大学学报(工学版), 2023, 57(8): 1573-1584.
[15] 陈晓丹,吴澳,赵睿杰,徐恩翔. 磁悬浮无轴离心泵叶轮转子动力学特性[J]. 浙江大学学报(工学版), 2023, 57(8): 1680-1688.