Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (6): 1305-1314    DOI: 10.3785/j.issn.1008-973X.2024.06.020
生物医学工程     
基于遗传算法-序列二次规划的磁共振被动匀场优化方法
赵杰1(),刘锋2,夏灵3,范一峰1,*()
1. 杭州医学院 医学影像学院,浙江 杭州 310053
2. 昆士兰大学 信息技术与电气工程学院,昆士兰 布里斯班 4072
3. 浙江大学 生物医学工程教育部重点实验室,浙江 杭州 310027
Passive shimming optimization method of MRI based on genetic algorithm-sequential quadratic programming
Jie ZHAO1(),Feng LIU2,Ling XIA3,Yifeng FAN1,*()
1. School of Medical Imaging, Hangzhou Medical College, Hangzhou 310053, China
2. School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane 4072, Australia
3. Key Laboratory of Biomedical Engineering, Ministry of Education, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2533 KB)   HTML
摘要:

为了解决磁共振成像(MRI)系统中固有的主磁场(B0)不均匀的问题,提出遗传算法-序列二次规划(GA-SQP)算法,以提高7 T磁共振的主磁场均匀性. 从被动匀场数学模型的角度出发,该混合算法利用GA算法获得稳定的初始解,实现主磁场的第1次优化,再通过SQP算法的快速求解,在较少的时间内实现主磁场的第2次优化,同时提高磁共振主磁场的均匀性. 采用正则化方法减少磁场均匀所需的铁片质量,并且获得稀疏的铁片分布. 在仿真建模的案例研究中,7 T磁共振裸磁场均匀度可以从462$ \times $10?6 优化到4.5$ \times $10?6,并且在匀场空间上仅消耗0.8 kg的铁片. 相比于传统的GA优化方法,新方案的磁场均匀性提高了96.7%,总铁片消耗质量减少了85.7%. 实验结果表明,GA-SQP算法比其他优化算法具有更强的鲁棒性和竞争力.

关键词: 磁共振成像被动匀场遗传算法-序列二次规划(GA-SQP)正则化方法非线性优化    
Abstract:

A genetic algorithm-sequential quadratic programming (GA-SQP) was proposed to improve the uniformity performance of main magnetic field (B0) in 7 T magnetic resonance imaging (MRI), in order to solve the inherent problem of uneven B0 field in MRI system. From the perspective of the mathematical model of passive shimming, a stable initial solution was obtained with the GA algorithm to achieve the first optimization of B0 field, and then the second optimization of the main magnetic field was realized in less time through the rapid solution of the SQP algorithm, and the uniformity of B0 of MRI was significantly improved. Additionally, L1-Norm regularization method was utilized to reduce the weight of the iron sheets and obtain a sparse iron distribution. Through simulation-based case studies, a bare magnetic field successfully shimmed with an uniformity of 462$ \times $10?6 to 4.5$ \times $10?6, using only 0.8 kg of iron pieces on shimming space. The magnetic field uniformity of the new solution was improved by 96.7% and the total iron sheet consumption weight was reduced by 85.7%, compared with those of the traditional GA optimization method. Experimental results show that the GA-SQP algorithm is more robust and competitive than other optimization algorithms.

Key words: magnetic resonance imaging    passive shimming    genetic algorithm-sequential quadratic programming (GA-SQP)    regularization method    nonlinear programming
收稿日期: 2023-07-06 出版日期: 2024-05-25
CLC:  TP 3  
基金资助: 浙江省基础公益研究计划资助项目(LTGY23H180019).
通讯作者: 范一峰     E-mail: zjuzhaojie@zju.edu.cn;fanyifeng@hmc.edu.cn
作者简介: 赵杰(1987—),男,博士,从事磁共振匀场技术研究. orcid.org/0000-0002-0485-2759. E-mail:zjuzhaojie@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵杰
刘锋
夏灵
范一峰

引用本文:

赵杰,刘锋,夏灵,范一峰. 基于遗传算法-序列二次规划的磁共振被动匀场优化方法[J]. 浙江大学学报(工学版), 2024, 58(6): 1305-1314.

Jie ZHAO,Feng LIU,Ling XIA,Yifeng FAN. Passive shimming optimization method of MRI based on genetic algorithm-sequential quadratic programming. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1305-1314.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.06.020        https://www.zjujournals.com/eng/CN/Y2024/V58/I6/1305

图 1  磁共振系统和内部匀场系统
图 2  单元匀场铁片磁场效果示意图
图 3  GA-SQP算法流程图
物理量/单位数值
磁场强度/ T7
球形区域直径/ mm400
匀场托盘半径/ mm360
匀场托盘数量24
每个托盘匀场抽屉数量24
匀场片尺寸/ mm40$ \times $50
每个匀场片厚度/ mm0.1
匀场抽屉最大厚度/ mm12
表 1  7 T磁共振系统被动匀场的系统参数
图 4  7 T磁共振原始磁场图
图 5  GA算法磁场分布和匀场铁片厚度仿真结果
图 6  GA算法获得的匀场铁片平面分布
初始点算法tFo/10?6
Upper boundSQP3 2567.9
Lower boundSQP3675.5
Middle pointSQP7246.8
RandomGA170 345145.0
GA solutionGA-SQP80 3674.5
表 2  不同初始点的SQP算法结果
图 7  SQP算法磁场分布和匀场铁片厚度仿真结果
图 8  SQP算法获得的匀场铁片厚度平面分布
图 9  不同优化方法的优化轨迹
图 10  GA-SQP 算法磁场分布和匀场铁片厚度仿真结果
图 11  GA-SQP 混合算法获得的匀场铁片平面分布
算法F/10?6M/kg
GA145.05.6
GA-SQP4.50.8
SQP5.51.5
LS6.89.6
LP12.09.5
表 3  多种优化算法的仿真结果
1 WANG Q, WEN H, LIU F, et al. Development of high magnetic field magnet technologies for the magnetic resonance medical imaging [C]// IEEE International Conference on Applied Superconductivity and Electromagnetic Devices . Shanghai: IEEE, 2015: 404−405.
2 JIN J. Electromagnetic analysis and design in magnetic resonance imaging [M]// New York: Routledge, 2018: 5−31.
3 EREGIN V E, KASHIKHIN M Formation of homogeneous field in a shielded superconducting solenoid for an MRI[J]. IEEE Transactions on Magnetics, 1992, 28 (1): 675- 677
doi: 10.1109/20.119968
4 FROLLO I, ANDRIS P, STROLKA I Measuring method and magnetic field homogeneity optimization for magnets used in NUM-imaging[J]. Measurement Science Review, 2001, 1 (1): 1- 4
5 LVOVSKY Y, JARVIS A S Superconducting systems for MRI-present solutions and new trends[J]. IEEE Transactions on Applied Superconductivity, 2005, 15 (2): 1317- 1325
doi: 10.1109/TASC.2005.849580
6 DORRI B, VERMILYEA E Passive shimming of MR magnets: algorithm, hardware and results[J]. IEEE Transactions on Applied Superconductivity, 1993, 3 (1): 254- 257
doi: 10.1109/77.233719
7 BELOV A, BUSHUEY V Passive shimming of the superconducting magnet for MRI[J]. IEEE Transactions on Applied Superconductivity, 1995, 5 (2): 679- 681
doi: 10.1109/77.402639
8 LIU F, ZHU J, XIA L, et al A hybrid field-harmonics approach for passive shimming design in MRI[J]. IEEE Transactions on Applied Superconductivity, 2011, 21 (2): 60- 67
doi: 10.1109/TASC.2011.2112358
9 SANCHEZ H, LIU F, WEBER E, et al Passive shim design and a shimming approach for Biplanar permanent magnetic resonance imaging magnets[J]. IEEE Transactions on Magnetics, 2008, 44 (3): 394- 402
doi: 10.1109/TMAG.2007.914770
10 ZHU X, WANG H, WANG H, et al A novel design method of passive shimming for 0.7-T Biplanar superconducting MRI magnet[J]. IEEE Transactions on Applied Superconductivity, 2016, 26 (7): 418- 419
11 YOU X F, WANG Z, ZHANG X B, et al Passive shimming based on mixed integer programming for MRI magnet[J]. Science China Technological Sciences, 2013, 5 (5): 1208- 1212
12 ZHANG Y, XIE D, BAI B, et al A novel optimal design method of passive shimming for permanent MRI magnet[J]. IEEE Transactions on Magnetics, 2008, 44 (6): 1058- 1061
doi: 10.1109/TMAG.2007.916267
13 JIN Z, TANG X, MENG B, et al A SQP optimization method for shimming a permanent MRI magnet[J]. Progress in Natural Science, 2009, 19 (10): 1439- 1443
doi: 10.1016/j.pnsc.2009.04.007
14 KONG X, ZHU M, XIA L, et al Passive shimming of a superconducting magnet using the L1-norm regularized least square algorithm[J]. Journal of Magnetic Resonance, 2016, 263: 122- 125
doi: 10.1016/j.jmr.2015.11.019
15 MITSUSHI A, KENJI S, TAKUYA F, et al Static magnetic field shimming calculation using TSVD regularization with constraints of iron piece placements[J]. IEEE Transactions on Applied Superconductivity, 2017, 27 (7): 1- 4
16 NOGUCHI S, HAHN S, IWASA Y S Passive shimming for magic-angle-spinning NMR[J]. IEEE Transactions on Applied Superconductivity, 2013, 24 (3): 1- 4
17 LI F, VOCCIO J, SAMMARTINO M, et al A theoretical design approach for passive shimming of a magic-angle-spinning NMR Magnet[J]. IEEE Transactions on Applied Superconductivity, 2016, 26 (4): 1- 4
18 QU H, NIU C, WANG Y, et al The optimal target magnetic field method for passive shimming in MRI[J]. Journal of Superconductivity and Novel Magnetism, 2020, 33 (3): 867- 875
doi: 10.1007/s10948-019-05241-2
19 WANG W, WANG Y, WANG H, et al On the passive shimming of a 7 T whole-body MRI superconducting magnet: implementation with minimized ferromagnetic materials usage and operable magnetic force control[J]. Medical Physics, 2023, 50 (10): 6514- 6524
doi: 10.1002/mp.16538
20 YAO Y, FANG Y, KOH C, et al A new design method for completely open architecture permanent magnet for MRI[J]. IEEE Transactions on Magnetics, 2005, 41 (5): 1504- 1507
doi: 10.1109/TMAG.2005.845080
21 GABOR R, ANIKO E Genetic algorithms in computer aided design[J]. Computer-Aided Design, 2003, 35 (8): 709- 726
doi: 10.1016/S0010-4485(03)00003-4
22 NOCEDAL J, WRIGHT S J. Numerical optimization: springer series in operations research and financial engineering [M]// New York: Springer, 2006: 270−302.
23 MANSOORNEJAD B, MOSTOUFI N, FARHANG J A hybrid GA-SQP optimization technique for determination of kinetic parameters of hydrogenation reactions[J]. Computers and Chemical Engineering, 2008, 32 (7): 1447- 1455
doi: 10.1016/j.compchemeng.2007.06.018
24 MERA, N S Hybrid GA-SQP algorithms for three-dimensional boundary detection problems in potential corrosion damage[J]. Mathematics, 2005, (10): 225- 242
25 LYANTSEV O, BREIKIN T, KULIKOV G, et al On-line performance optimization of aero engine control system[J]. Automatica, 2003, 39 (12): 2115- 2121
doi: 10.1016/S0005-1098(03)00224-3
[1] 王天磊,冯李航,孙振兴,柯云,李超超,胡记伟. 刚柔耦合机械手的抓握姿态和力综合优化方法[J]. 浙江大学学报(工学版), 2023, 57(12): 2367-2374.
[2] 刘嘉诚,冀俊忠. 基于宽度学习系统的fMRI数据分类方法[J]. 浙江大学学报(工学版), 2021, 55(7): 1270-1278.
[3] 黄毅鹏,胡冀苏,钱旭升,周志勇,赵文露,马麒,沈钧康,戴亚康. SE-Mask-RCNN:多参数MRI前列腺癌分割方法[J]. 浙江大学学报(工学版), 2021, 55(1): 203-212.
[4] 祁云,孙大明,苏峙岳,乔鑫. 磁共振成像低温超导磁体冷却系统设计及数值分析[J]. 浙江大学学报(工学版), 2019, 53(5): 965-971.
[5] 何为, 夏灵. 基于掩码的区域增长相位解缠方法[J]. 浙江大学学报(工学版), 2015, 49(4): 792-797.
[6] 陈国新, 陈生昌. 位场数据重构的lp范数稀疏约束正则化方法[J]. 浙江大学学报(工学版), 2014, 48(4): 748-785.
[7] 何为, 夏灵. 基于掩码的区域增长相位解缠方法[J]. 浙江大学学报(工学版), 2014, 48(11): 1-2.
[8] 蒋明峰, 朱礼涛, 汪亚明, 夏灵, 龚莹岚. 结合非线性GRAPPA与SENSE的并行磁共振成像[J]. 浙江大学学报(工学版), 2014, 48(10): 1865-1870.
[9] 孙创日,甄帅,夏顺仁. 基于吸引区域的多模态脑磁共振图像仿射配准[J]. J4, 2012, 46(9): 1722-1728.
[10] 周水琴, 应义斌, 商德胜. 基于形态学的香梨褐变核磁共振成像无损检测[J]. J4, 2012, 46(12): 2141-2145.
[11] 刘晓芳,叶修梓,张三元,张引. 并行磁共振图像的非二次正则化保边性重建[J]. J4, 2012, 46(11): 2035-2043.
[12] 刘阳,吴占雄,朱善安,贺斌. 各向异性头部组织感应电流磁共振电阻抗成像[J]. J4, 2011, 45(1): 168-172.
[13] 张孝通 闫丹丹 朱善安 贺斌. 基于模糊神经网络的磁共振电阻抗成像算法[J]. J4, 2008, 42(7): 1212-1217.
[14] 夏灵 朱敏华 徐斌 魏青 刘锋 斯图阿特·克洛泽. 多层球状头模型中MRI线圈激励下射频场的求解——并矢格林函数/矩量法[J]. J4, 2007, 41(5): 871-876.