生物医学工程 |
|
|
|
|
基于遗传算法-序列二次规划的磁共振被动匀场优化方法 |
赵杰1( ),刘锋2,夏灵3,范一峰1,*( ) |
1. 杭州医学院 医学影像学院,浙江 杭州 310053 2. 昆士兰大学 信息技术与电气工程学院,昆士兰 布里斯班 4072 3. 浙江大学 生物医学工程教育部重点实验室,浙江 杭州 310027 |
|
Passive shimming optimization method of MRI based on genetic algorithm-sequential quadratic programming |
Jie ZHAO1( ),Feng LIU2,Ling XIA3,Yifeng FAN1,*( ) |
1. School of Medical Imaging, Hangzhou Medical College, Hangzhou 310053, China 2. School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane 4072, Australia 3. Key Laboratory of Biomedical Engineering, Ministry of Education, Zhejiang University, Hangzhou 310027, China |
引用本文:
赵杰,刘锋,夏灵,范一峰. 基于遗传算法-序列二次规划的磁共振被动匀场优化方法[J]. 浙江大学学报(工学版), 2024, 58(6): 1305-1314.
Jie ZHAO,Feng LIU,Ling XIA,Yifeng FAN. Passive shimming optimization method of MRI based on genetic algorithm-sequential quadratic programming. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1305-1314.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.06.020
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I6/1305
|
1 |
WANG Q, WEN H, LIU F, et al. Development of high magnetic field magnet technologies for the magnetic resonance medical imaging [C]// IEEE International Conference on Applied Superconductivity and Electromagnetic Devices . Shanghai: IEEE, 2015: 404−405.
|
2 |
JIN J. Electromagnetic analysis and design in magnetic resonance imaging [M]// New York: Routledge, 2018: 5−31.
|
3 |
EREGIN V E, KASHIKHIN M Formation of homogeneous field in a shielded superconducting solenoid for an MRI[J]. IEEE Transactions on Magnetics, 1992, 28 (1): 675- 677
doi: 10.1109/20.119968
|
4 |
FROLLO I, ANDRIS P, STROLKA I Measuring method and magnetic field homogeneity optimization for magnets used in NUM-imaging[J]. Measurement Science Review, 2001, 1 (1): 1- 4
|
5 |
LVOVSKY Y, JARVIS A S Superconducting systems for MRI-present solutions and new trends[J]. IEEE Transactions on Applied Superconductivity, 2005, 15 (2): 1317- 1325
doi: 10.1109/TASC.2005.849580
|
6 |
DORRI B, VERMILYEA E Passive shimming of MR magnets: algorithm, hardware and results[J]. IEEE Transactions on Applied Superconductivity, 1993, 3 (1): 254- 257
doi: 10.1109/77.233719
|
7 |
BELOV A, BUSHUEY V Passive shimming of the superconducting magnet for MRI[J]. IEEE Transactions on Applied Superconductivity, 1995, 5 (2): 679- 681
doi: 10.1109/77.402639
|
8 |
LIU F, ZHU J, XIA L, et al A hybrid field-harmonics approach for passive shimming design in MRI[J]. IEEE Transactions on Applied Superconductivity, 2011, 21 (2): 60- 67
doi: 10.1109/TASC.2011.2112358
|
9 |
SANCHEZ H, LIU F, WEBER E, et al Passive shim design and a shimming approach for Biplanar permanent magnetic resonance imaging magnets[J]. IEEE Transactions on Magnetics, 2008, 44 (3): 394- 402
doi: 10.1109/TMAG.2007.914770
|
10 |
ZHU X, WANG H, WANG H, et al A novel design method of passive shimming for 0.7-T Biplanar superconducting MRI magnet[J]. IEEE Transactions on Applied Superconductivity, 2016, 26 (7): 418- 419
|
11 |
YOU X F, WANG Z, ZHANG X B, et al Passive shimming based on mixed integer programming for MRI magnet[J]. Science China Technological Sciences, 2013, 5 (5): 1208- 1212
|
12 |
ZHANG Y, XIE D, BAI B, et al A novel optimal design method of passive shimming for permanent MRI magnet[J]. IEEE Transactions on Magnetics, 2008, 44 (6): 1058- 1061
doi: 10.1109/TMAG.2007.916267
|
13 |
JIN Z, TANG X, MENG B, et al A SQP optimization method for shimming a permanent MRI magnet[J]. Progress in Natural Science, 2009, 19 (10): 1439- 1443
doi: 10.1016/j.pnsc.2009.04.007
|
14 |
KONG X, ZHU M, XIA L, et al Passive shimming of a superconducting magnet using the L1-norm regularized least square algorithm[J]. Journal of Magnetic Resonance, 2016, 263: 122- 125
doi: 10.1016/j.jmr.2015.11.019
|
15 |
MITSUSHI A, KENJI S, TAKUYA F, et al Static magnetic field shimming calculation using TSVD regularization with constraints of iron piece placements[J]. IEEE Transactions on Applied Superconductivity, 2017, 27 (7): 1- 4
|
16 |
NOGUCHI S, HAHN S, IWASA Y S Passive shimming for magic-angle-spinning NMR[J]. IEEE Transactions on Applied Superconductivity, 2013, 24 (3): 1- 4
|
17 |
LI F, VOCCIO J, SAMMARTINO M, et al A theoretical design approach for passive shimming of a magic-angle-spinning NMR Magnet[J]. IEEE Transactions on Applied Superconductivity, 2016, 26 (4): 1- 4
|
18 |
QU H, NIU C, WANG Y, et al The optimal target magnetic field method for passive shimming in MRI[J]. Journal of Superconductivity and Novel Magnetism, 2020, 33 (3): 867- 875
doi: 10.1007/s10948-019-05241-2
|
19 |
WANG W, WANG Y, WANG H, et al On the passive shimming of a 7 T whole-body MRI superconducting magnet: implementation with minimized ferromagnetic materials usage and operable magnetic force control[J]. Medical Physics, 2023, 50 (10): 6514- 6524
doi: 10.1002/mp.16538
|
20 |
YAO Y, FANG Y, KOH C, et al A new design method for completely open architecture permanent magnet for MRI[J]. IEEE Transactions on Magnetics, 2005, 41 (5): 1504- 1507
doi: 10.1109/TMAG.2005.845080
|
21 |
GABOR R, ANIKO E Genetic algorithms in computer aided design[J]. Computer-Aided Design, 2003, 35 (8): 709- 726
doi: 10.1016/S0010-4485(03)00003-4
|
22 |
NOCEDAL J, WRIGHT S J. Numerical optimization: springer series in operations research and financial engineering [M]// New York: Springer, 2006: 270−302.
|
23 |
MANSOORNEJAD B, MOSTOUFI N, FARHANG J A hybrid GA-SQP optimization technique for determination of kinetic parameters of hydrogenation reactions[J]. Computers and Chemical Engineering, 2008, 32 (7): 1447- 1455
doi: 10.1016/j.compchemeng.2007.06.018
|
24 |
MERA, N S Hybrid GA-SQP algorithms for three-dimensional boundary detection problems in potential corrosion damage[J]. Mathematics, 2005, (10): 225- 242
|
25 |
LYANTSEV O, BREIKIN T, KULIKOV G, et al On-line performance optimization of aero engine control system[J]. Automatica, 2003, 39 (12): 2115- 2121
doi: 10.1016/S0005-1098(03)00224-3
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|