Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (5): 965-971    DOI: 10.3785/j.issn.1008-973X.2019.05.018
能源与环境工程     
磁共振成像低温超导磁体冷却系统设计及数值分析
祁云(),孙大明*(),苏峙岳,乔鑫
浙江大学 能源工程学院 浙江省制冷与低温技术重点实验室,浙江 杭州 310027
Design and numerical analysis of a cooling system for low temperature superconducting magnet of magnetic resonance imaging
Yun QI(),Da-ming SUN*(),Shi-yue SU,Xin QIAO
Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang University, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1211 KB)   HTML
摘要:

为了减小冷却磁共振成像(MRI)低温超导磁体的资源消耗和经济成本,设计可快速冷却室温磁体至60 K以下的系统,并通过建立数学物理模型进行数值模拟,对系统进行优化设计和深入分析. 系统以自主研发的大冷量单级斯特林制冷机为冷源,包括低温风机、低温调控阀和氦气罐等组成部分. 研究表明,优化系统运行参数可以显著提高冷却性能,其中系统内氦气的压力和流速尤为关键,因为两者能够显著影响压降与换热,进而影响冷却时间以及磁体最终所能达到的冷却温度. 此外,当前斯特林制冷机的冷端换热器性能尚有提升空间. 通过参数优化,系统在氦气压力为0.3 MPa、流速为13 m/s时能够达到较快的冷却速率,可在73.5 h内将质量为2 t的室温超导磁体冷却至60 K以下,有潜力在实际应用中实现MRI低温超导磁体的低能耗高效冷却.

关键词: 磁共振成像(MRI)低温超导磁体循环冷却斯特林制冷机    
Abstract:

A system capable of rapidly cooling magnets from room temperature to below 60 K was designed, in order to reduce the resource consumption and economic cost of cooling the low temperature superconducting magnet of magnetic resonance imaging (MRI). Furthermore, the design optimization and in-depth analysis were carried out by numerical simulation based on its mathematical physics model. A self-developed single-stage Stirling cryocooler with large cooling capacity was used as the cold source of this system, comprising a cryogenic fan, control valves and one helium gas cylinder. Results showed that the cooling performance can be improved by optimizing the operating parameters of system, of which the pressure and flow rate of helium gas were particularly critical, because they can significantly affect the pressure drop and heat transfer and further affect the cooling time and temperature that the magnet could ultimately attain. Moreover, the current cold end heat exchanger performance of Stirling cryocooler still had space for promotion. This system can achieve a fast cooling rate at helium pressure of 0.3 MPa and flow rate of 13 m/s through parameter optimization. A superconducting magnet weighing 2 tons can be cooled to below 60 K from room temperature within 73.5 h based on the above condition, which showed that it had the potential to achieve low energy consumption and high efficiency of cooling MRI low temperature superconducting magnet in practical applications.

Key words: magnetic resonance imaging (MRI)    cryogenics    superconducting magnet    circulating cooling    Stirling cryocooler
收稿日期: 2018-10-17 出版日期: 2019-05-17
CLC:  TB 651  
通讯作者: 孙大明     E-mail: 21627052@zju.edu.cn;sundaming@zju.edu.cn
作者简介: 祁云(1994—),男,博士生,从事低温制冷机研究. orcid.org/0000-0002-4662-1617. E-mail: 21627052@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
祁云
孙大明
苏峙岳
乔鑫

引用本文:

祁云,孙大明,苏峙岳,乔鑫. 磁共振成像低温超导磁体冷却系统设计及数值分析[J]. 浙江大学学报(工学版), 2019, 53(5): 965-971.

Yun QI,Da-ming SUN,Shi-yue SU,Xin QIAO. Design and numerical analysis of a cooling system for low temperature superconducting magnet of magnetic resonance imaging. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 965-971.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.05.018        http://www.zjujournals.com/eng/CN/Y2019/V53/I5/965

图 1  MRI低温超导磁体冷却系统示意图
图 2  冷端换热器局部剖视图
图 3  Matlab程序计算逻辑框图
参数 数值 单位
铜基磁体质量 500 kg
铁基磁体质量 1 500 kg
磁体流道横截面积 0.3 m2
磁体流道换热面积 6.1 m2
制冷机换热管外径 2.5 mm
制冷机换热管数量 90 ?
循环管路总长度 11 m
管路充气压力 <0.8 MPa
表 1  Matlab数值计算程序输入参数
图 4  充气压力对冷却时间的影响
图 5  充气压力对传热系数和压降的影响
图 6  氦气流速对冷却时间的影响
图 7  流速对传热系数和压降的影响
图 8  冷却过程中的温度变化
图 9  冷却过程中制冷机冷端对流传热系数变化
1 倪萍, 赵明, 陈自谦 MRI磁体技术的发展历程及展望[J]. 中国医疗设备, 2013, 28 (10): 6- 10
NI Ping, ZHAO Ming, CHEN Zi-qian Development and recent progress of MRI magnet technology[J]. Chinese Journal of Medical Equipment, 2013, 28 (10): 6- 10
doi: 10.3969/j.issn.1674-1633.2013.10.002
2 余慧娴 超导MRI磁体无液氦改造探讨[J]. 中国医疗器械杂志, 2014, 38 (1): 23- 25
YU Hui-xian The discussion of superconducting MRI magnet transformation without LHe[J]. Chinese Journal of Medical Instrumentation, 2014, 38 (1): 23- 25
3 TAKASHI N, DAIKI T, YOUSUKE Y, et al Development of a superconducting bulk magnet for NMR and MRI[J]. Journal of Magnetic Resonance, 2015, 259: 68- 75
doi: 10.1016/j.jmr.2015.07.012
4 卢杰, 甘智华, 邱利民, 等 脉管制冷用于低温超导磁体冷却的可行性分析[J]. 低温物理学报, 2005, 27 (5): 939- 943
LU Jie, GAN Zhi-hua, QIU Li-min, et al Possibility of pulse tube refrigeration for low-temperature superconducting magnets[J]. Chinese Journal of Low Temperature Physics, 2005, 27 (5): 939- 943
5 刘宏伟. 制冷机冷却的超导磁体的稳定性研究[D]. 北京:中国科学院电工研究所, 2006.
LIU Hong-wei. Stability study on cryocooler-cooled superconducting magnet [D]. Beijing: Institute of Electrical Engineering of the Chinese Academy of Sciences, 2006.
6 SUN D M, CHAO W, SUN J C, et al Advances in high power Stirling-type pulse tube cooler[J]. IEEE Transactions on Superconductor, 2010, 20 (3): 2043- 2046
doi: 10.1109/TASC.2010.2041345
7 HOENIG M O Design concepts for a mechanically refrigerated 13 K superconducting magnet system[J]. IEEE Transactions on Magnetics, 1983, 19 (3): 880- 883
doi: 10.1109/TMAG.1983.1062538
8 WATANABE K, AWAJI S, TAKAHASHI K, et al Con-struction of the cryogen-free 23 T hybrid magnet[J]. IEEE Transactions on Applied Superconductivity, 2002, 12 (1): 678- 681
doi: 10.1109/TASC.2002.1018492
9 KURUSU T, ONO M, HANAI S, et al A cryocooer-cooled 19 T superconducting magnet with 52 mm room temperature bore[J]. IEEE Transactions on Applied Super-conductivity, 2004, 14 (2): 393- 396
doi: 10.1109/TASC.2004.829679
10 WATANABE K, NISHIJIMA G, AWAJI S, et al Performance of a cryogen-free 30 T-class hybrid magnet[J]. IEEE Transactions on Applied Superconductivity, 2006, 16 (2): 934- 939
doi: 10.1109/TASC.2006.870787
11 MORIEA T, SHIRAISHIB T, XU M Y Experimental investigation of cooling capacity of 4 K GM cryocoolers in magnetic fields[J]. Physics Procedia, 2015, 67: 474- 478
doi: 10.1016/j.phpro.2015.06.061
12 IWASA Y, BASCUNAN J, HAHN S, et al Solid-cryogen cooling technique for superconducting magnets of NMR and MRI[J]. Physics Procedia, 2012, 36: 1348- 1353
doi: 10.1016/j.phpro.2012.06.303
13 GIEBELER F, THUMMES G, BEST K J A 5 T persistent current niobium-titanium magnet with a 4 K pulse tube cryocooler[J]. Superconductor Science and Technology, 2004, 17 (5): 135- 139
doi: 10.1088/0953-2048/17/5/009
14 JIN H B Vertical access zero boil off frampable superconducting magnet system with horizontal field for semicon ductor crystal growth[J]. IEEE Transactions on Applied Superconductivity, 2003, 13 (2): 1656- 1659
doi: 10.1109/TASC.2003.812856
15 CHOI Y S, KIM D L, SHIN D W Cool-down characteristic of conduction-cooled superconducting magnet by a cryocooler[J]. Physica C, 2011, 471 (21/22): 1440- 1444
16 CHOI Y S, KIM D L, SHIN D W Optimal cool-down time of a 4 K superconducting magnet cooled by a two-stage cryocooler[J]. Cryogenics, 2012, 52 (1): 13- 18
doi: 10.1016/j.cryogenics.2011.10.002
17 INMYONG P, SANGKWONA J Development of the active magnetic regenerative refrigerator operating between 77 K and 20 K with the conduction cooled high temperature superconducting magnet[J]. Cryogenics, 2017, 88: 106- 115
doi: 10.1016/j.cryogenics.2017.09.008
18 ANASHKIN O P Cryogen-free HTS coil placed in a heat-exchange gas[J]. Cryogenics, 2002, 42 (5): 295- 297
doi: 10.1016/S0011-2275(02)00037-1
19 TSUKANOV V, BRAGIN A, KHRUSHCHEV S Performance of nitrogen heat tubes in cooling down of superconducting magnets[J]. Physics Procedia, 2016, 84: 90- 95
doi: 10.1016/j.phpro.2016.11.016
20 DAI Y M, YAN L G, ZHAO B Z, et al Tests on a 6 T conduction-cooled superconducting magnet[J]. IEEE Transactions on Applied Superconductivity, 2006, 16 (2): 961- 964
doi: 10.1109/TASC.2006.873331
21 张楷浩, 邱利民, 甘智华, 等 制冷机传导冷却的超导磁体冷却系统研究进展[J]. 浙江大学学报: 工学版, 2012, 46 (7): 1213- 1226
ZHANG Kai-hao, QIU Li-min, GAN Zhi-hua, et al Advance in cryogenic system of cryocooled super-conducting magnet[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (7): 1213- 1226
22 张海峰, 叶海峰, 章学华, 等 传导冷却型低温超导磁体系统的设计与实验[J]. 低温工程, 2015, (5): 28- 32
ZHANG Hai-feng, YE Hai-feng, ZHANG Xue-hua, et al Design and experiment of conduction cooled superconducting magnet system[J]. Cryogenics, 2015, (5): 28- 32
doi: 10.3969/j.issn.1000-6516.2015.02.006
23 蔡亚超, 徐雅, 沈惬, 等 大功率斯特林制冷机的整机数值模拟[J]. 低温工程, 2014, (3): 27- 31
CAI Ya-chao, XU Ya, SHEN Qie, et al Numerical simulation of a high power Stirling cryocooler[J]. Cryogenics, 2014, (3): 27- 31
doi: 10.3969/j.issn.1000-6516.2014.03.006
24 徐雅, 蔡亚超, 沈惬, 等 液氮温区大冷量斯特林制冷机优化研究[J]. 工程热物理学报, 2015, 10: 2083- 2086
XU Ya, CAI Ya-chao, SHEN Qie, et al Optimization study on high cooling capacity Stirling cryocooler working on liquid nitrogen temperature[J]. Journal of Engineering Thermophysics, 2015, 10: 2083- 2086
25 席有民. 微型整体式斯特林制冷机研制及整机工程化模型研究[D]. 武汉: 华中科技大学, 2005.
XI You-min. Development of miniature integral type Stirling cryocoolers and investigation on the cooler industrialization model [D]. Wuhan: Huazhong University of Science and Technology, 2005.
26 蔡亚超. 大冷量整体式斯特林制冷机工作特性研究[D]. 杭州: 浙江大学, 2015.
CAI Ya-chao. Working performance investigation on a high-power integral-type Stirling cryocooler [D]. Hangzhou: Zhejiang University, 2015.
27 GNIELINSKI V New equations for heat mass transfer in turbulent pipe and channel flows[J]. International Chemical Engineering, 1976, 16: 359- 368
28 SHAH R K, LONDON A L Laminar flow forced convection in ducts[J]. Journal of Fluids Engineering, 1978, 102 (2): 431- 455
[1] 吴佳铭,陈自强. 可变低温环境锂电池组内部短路故障诊断[J]. 浙江大学学报(工学版), 2020, 54(7): 1433-1439.
[2] 廖小伟,王元清,吴剑国,石永久. 低温环境下十字形非传力角焊缝接头的疲劳性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2018-2026.
[3] 李亦健, 吴舒琴, 金滔. 低温浆体电容式液位计的优化及实验[J]. 浙江大学学报(工学版), 2018, 52(5): 966-970.
[4] 丁会明, 吴英哲, 郑津洋, 陈朝晖, 尹立军. S30408焊接接头低温力学性能试验[J]. 浙江大学学报(工学版), 2018, 52(2): 217-223.
[5] 虞效益, 陈光明, 胡长兴, 徐美娟. 电导法测定低温保护剂浓度及其在低温保存中应用[J]. 浙江大学学报(工学版), 2017, 51(8): 1640-1645.
[6] 温小栋, 蔡煜梁, 赵莉, 冯蕾. 凝灰岩机制砂混凝土抗低温硫酸盐侵蚀性[J]. 浙江大学学报(工学版), 2017, 51(3): 532-537.
[7] 徐辉, 蔡忆昔, 李小华, 施蕴曦, 李伟俊 . 低温等离子体降低柴油机微粒和NOx排放试验研究[J]. 浙江大学学报(工学版), 2016, 50(12): 2418-2423.
[8] 王宇辰, 陈建业, 徐璐, 张小斌. 基于电容法的管内低温流体液膜厚度测量方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1855-1858.
[9] 何为, 夏灵. 基于掩码的区域增长相位解缠方法[J]. 浙江大学学报(工学版), 2015, 49(4): 792-797.
[10] 甘智华, 陶轩, 刘东立, 孙潇, 闫春杰. 日本空间液氦温区低温技术的发展现状[J]. 浙江大学学报(工学版), 2015, 49(10): 1821-1835.
[11] 何为, 夏灵. 基于掩码的区域增长相位解缠方法[J]. 浙江大学学报(工学版), 2014, 48(11): 1-2.
[12] 蔡俊, 张舟永, 凌国平. 急冷Al-Cr合金低温氧化制备自修复α-Al2O3薄膜[J]. J4, 2013, 47(2): 319-324.
[13] 张绍志, 王宏宇, 陈光明. 氩氦刀冷冻过程数值模拟[J]. J4, 2013, 47(12): 2253-2259.
[14] 舒翔宇,郑津洋,寿比南,缪存坚,黄泽,郭阿宾. 应变强化奥氏体不锈钢焊接接头冲击试验研究[J]. J4, 2012, 46(7): 1162-1167.
[15] 张楷浩,邱利民,甘智华,周晓晓. 制冷机传导冷却的超导磁体冷却系统研究进展[J]. J4, 2012, 46(7): 1213-1226.