Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (7): 1433-1439    DOI: 10.3785/j.issn.1008-973X.2020.07.023
电气工程     
可变低温环境锂电池组内部短路故障诊断
吴佳铭(),陈自强*()
上海交通大学 高新船舶与深海开发装备协同创新中心,上海 200240
Fault diagnosis of internal short circuit of lithium battery pack in variable low temperature environment
Jia-ming WU(),Zi-qiang CHEN*()
Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(2097 KB)   HTML
摘要:

针对可变低温环境下锂离子电池组易发生的内部短路故障问题,提出基于模型的电池组参数估计和故障诊断方法. 通过特性实验,建立三元锂电池容量与温度的关系. 根据标准-偏差模型,采用无迹卡尔曼滤波实时估计标准电池状态和参数,结合双卡尔曼滤波得到电池组状态和参数的实时估计结果,根据电池容量衰减定量诊断内部短路故障. 在5~25 °C时变温度下,结合实际工况进行电池组充放电实验,通过并联电阻法模拟内部短路故障,得到电池组状态和内部短路电阻估计值和真实值的对比. 实验结果表明,利用提出的方法能够快速、精确地跟踪电池组状态,准确地诊断电池内部短路故障.

关键词: 低温锂电池组标准-偏差模型电池组容量内部短路    
Abstract:

A model-based method of parameters estimation and fault diagnosis for lithium-ion battery pack was proposed considering the internal short circuit fault which was easy to occur in lithium-ion battery pack under variable low temperature environment. The relationship between capacity and temperature of lithium-ion battery was established through the characteristic test. The unscented Kalman filter was utilized to estimate state and parameters of standard cell according to the standard-deviation model. The real-time estimation results of battery pack were obtained by double Kalman filter, and the internal short-circuit fault was quantitatively diagnosed depending on the depletion of capacity. The actual driving condition test was conducted on a series-connected battery pack under the time-varying temperature of 5~25 °C, and internal short circuit fault was simulated by the parallel resistance method. The battery state estimation and internal short circuit fault diagnosis results were compared with real value. The experimental results show that the proposed method can precisely track the state of battery pack and accurately diagnose the internal short-circuit fault.

Key words: low temperature    lithium-ion battery pack    standard-deviation model    capacity of battery pack    internal short-circuit
收稿日期: 2019-07-21 出版日期: 2020-07-05
CLC:  TM 912  
基金资助: 国家自然科学基金资助项目(51677119)
通讯作者: 陈自强     E-mail: jiamingwu@sjtu.edu.cn;chenziqiang@sjtu.edu.cn
作者简介: 吴佳铭(1995—),男,硕士生,从事锂电池诊断研究. orcid.org/0000-0001-5775-5111. E-mail: jiamingwu@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吴佳铭
陈自强

引用本文:

吴佳铭,陈自强. 可变低温环境锂电池组内部短路故障诊断[J]. 浙江大学学报(工学版), 2020, 54(7): 1433-1439.

Jia-ming WU,Zi-qiang CHEN. Fault diagnosis of internal short circuit of lithium battery pack in variable low temperature environment. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1433-1439.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.07.023        http://www.zjujournals.com/eng/CN/Y2020/V54/I7/1433

图 1  电池模型
图 2  电池容量和温度的关系
图 3  电阻随温度与SOC变化
图 4  内部短路故障诊断流程
参数 数值
尺寸/cm 13×9.5×0.8
额定容量/(A·h) 10
质量/kg 0.2
额定电压/V 3.7
充电截止电压/V 4.2
放电截止电压/V 3
表 1  实验电池单体参数表
图 5  内部短路实验设备图
图 6  FUDS工况的诊断结果
图 7  内部短路诊断结果
1 黄德扬, 陈自强, 郑昌文 时变温度环境下锂离子电池自适应SOC估计方法[J]. 装备环境工程, 2018, 15 (12): 38- 44
HUANG De-yang, CHEN Zi-qiang, ZHENG Chang-wen SOC adaptive estimation method for Li-ion battery applied in temperature-varying condition[J]. Equipment Environmental Engineering, 2018, 15 (12): 38- 44
2 赵世玺, 郭双桃, 赵建伟, 等 锂离子电池低温特性研究进展[J]. 硅酸盐学报, 2016, 44 (1): 19- 28
ZHAO Shi-xi, GUO Shuang-tao, ZHAO Jian-wei, et al Development on low-temperature performance of lithium ion batteries[J]. Journal of the Chinese Ceramic Society, 2016, 44 (1): 19- 28
3 GUO R, LU L, OUYANG M, et al Mechanism of the entire overdischarge process and overdischarge induced internal short circuit in lithium-ion batteries[J]. Scientific Reports, 2016, 6 (1): 359- 367
4 ZHANG M X, DU J Y, LIU L S, et al Internal short circuit detection method for battery pack based on circuit topology[J]. Science China-Technological Sciences, 2018, 61 (10): 1502- 1511
doi: 10.1007/s11431-017-9299-3
5 FENG X, WENG C, OUYANG M, et al Online internal short circuit detection for a large format lithium ion battery[J]. Applied Energy, 2016, 161: 168- 180
doi: 10.1016/j.apenergy.2015.10.019
6 ZHENG J G, XU Y M, GAO X, et al Transient thermal behavior of internal short-circuit in lithium iron phosphate battery[J]. International Journal of electrochemical Science, 2018, 13 (12): 76- 85
7 REICHL T, HRZINA P Capacity detection of internal short circuit[J]. Journal of Energy Storage, 2018, 15 (2): 345- 349
8 CHEN M, BAI F, LIN S, et al Performance and safety protection of internal short circuit in lithium-ion battery based on a multilayer electro-thermal coupling model[J]. Applied Thermal Engineering, 2018, 146: 775- 784
9 SEO M, GOH T, PARK M, et al Detection method for soft internal short circuit in lithium-ion battery pack by extracting open circuit voltage of faulted cell[J]. ENERGIES, 2018, 11 (7): 1669- 1686
doi: 10.3390/en11071669
10 GAO W, ZHENG Y, OUYANG M, et al Micro-short-circuit diagnosis for series-connected lithium-ion battery packs using mean-difference model[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (3): 2132- 2142
doi: 10.1109/TIE.2018.2838109
11 SUN F, XIONG R A novel dual-scale cell state-of-charge estimation approach for series-connected battery pack used in electric vehicles[J]. Journal of Power Sources, 2015, 274: 582- 594
doi: 10.1016/j.jpowsour.2014.10.119
12 黄保帅, 张巍 基于锂离子电池PACK放电容量影响因素的研究[J]. 电源技术, 2018, 42 (12): 1927- 1929
HUANG Bao-shuai, ZHANG Wei Study on influence factors based on discharge capacity of lithium ion battery pack[J]. Chinese Journal of Power Sources, 2018, 42 (12): 1927- 1929
doi: 10.3969/j.issn.1002-087X.2018.12.048
13 WANG Q S, MAO B B, STOLIAROY S I, et al A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2003, 73 (7): 95- 131
14 KIM G H, PESARAN A, SPOTNITZ R A three dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170 (2): 476- 489
doi: 10.1016/j.jpowsour.2007.04.018
[1] 廖小伟,王元清,吴剑国,石永久. 低温环境下十字形非传力角焊缝接头的疲劳性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2018-2026.
[2] 祁云,孙大明,苏峙岳,乔鑫. 磁共振成像低温超导磁体冷却系统设计及数值分析[J]. 浙江大学学报(工学版), 2019, 53(5): 965-971.
[3] 李亦健, 吴舒琴, 金滔. 低温浆体电容式液位计的优化及实验[J]. 浙江大学学报(工学版), 2018, 52(5): 966-970.
[4] 丁会明, 吴英哲, 郑津洋, 陈朝晖, 尹立军. S30408焊接接头低温力学性能试验[J]. 浙江大学学报(工学版), 2018, 52(2): 217-223.
[5] 虞效益, 陈光明, 胡长兴, 徐美娟. 电导法测定低温保护剂浓度及其在低温保存中应用[J]. 浙江大学学报(工学版), 2017, 51(8): 1640-1645.
[6] 温小栋, 蔡煜梁, 赵莉, 冯蕾. 凝灰岩机制砂混凝土抗低温硫酸盐侵蚀性[J]. 浙江大学学报(工学版), 2017, 51(3): 532-537.
[7] 徐辉, 蔡忆昔, 李小华, 施蕴曦, 李伟俊 . 低温等离子体降低柴油机微粒和NOx排放试验研究[J]. 浙江大学学报(工学版), 2016, 50(12): 2418-2423.
[8] 王宇辰, 陈建业, 徐璐, 张小斌. 基于电容法的管内低温流体液膜厚度测量方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1855-1858.
[9] 蔡俊, 张舟永, 凌国平. 急冷Al-Cr合金低温氧化制备自修复α-Al2O3薄膜[J]. J4, 2013, 47(2): 319-324.
[10] 张绍志, 王宏宇, 陈光明. 氩氦刀冷冻过程数值模拟[J]. J4, 2013, 47(12): 2253-2259.
[11] 舒翔宇,郑津洋,寿比南,缪存坚,黄泽,郭阿宾. 应变强化奥氏体不锈钢焊接接头冲击试验研究[J]. J4, 2012, 46(7): 1162-1167.
[12] 张楷浩,邱利民,甘智华,周晓晓. 制冷机传导冷却的超导磁体冷却系统研究进展[J]. J4, 2012, 46(7): 1213-1226.
[13] 甘智华, 王博, 刘东立, 王任卓, 张学军. 空间液氦温区机械式制冷技术发展现状及趋势[J]. J4, 2012, 46(12): 2160-2177.
[14] 金津, 何乐年, 陈琛, 叶益迭. 多节串联锂电池的多功能管理芯片设计与实现[J]. J4, 2011, 45(2): 306-313.
[15] 夏巧民, 胡亚才. 溴化锂储热储冷系统[J]. J4, 2011, 45(10): 1804-1808.